Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340051

ABSTRACT

Here, isotopically labeled 68ZnO NPs (ZnO NPs) and 68ZnO NPs with a thin 68Zn3(PO4)2 shell (ZnO_Ph NPs) were foliarly applied (40 µg Zn) to pepper plants (Capsicum annuum) to determine the effect of surface chemistry of ZnO NPs on the Zn uptake and systemic translocation to plant organs over 6 weeks. Despite similar dissolution of both Zn-based NPs after 3 weeks, the Zn3(PO4)2 shell on ZnO_Ph NPs (48 ± 12 nm; -18.1 ± 0.6 mV) enabled a leaf uptake of 2.31 ± 0.34 µg of Zn, which is 2.7 times higher than the 0.86 ± 0.18 µg of Zn observed for ZnO NPs (26 ± 8 nm; 14.6 ± 0.4 mV). Further, ZnO_Ph NPs led to higher Zn mobility and phloem loading, while Zn from ZnO NPs was stored in the epidermal tissues, possibly through cell wall immobilization as a storage strategy. These differences led to higher translocation of Zn from the ZnO_Ph NPs within all plant compartments. ZnO_Ph NPs were also more persistent as NPs in the exposed leaf and in the plant stem over time. As a result, the treatment of ZnO_Ph NPs induced significantly higher Zn transport to the fruit than ZnO NPs. As determined by spICP-TOFMS, Zn in the fruit was not in the NP form. These results suggest that the Zn3(PO4)2 shell on ZnO NPs can help promote the transport of Zn to pepper fruits when foliarly applied. This work provides insight into the role of Zn3(PO4)2 on the surface of ZnO NPs in foliar uptake and in planta biodistribution for improving Zn delivery to edible plant parts and ultimately improving the Zn content in food for human consumption.

2.
Sci Total Environ ; 912: 169458, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38142008

ABSTRACT

Capturing the breadth of chemical exposures in utero is critical in understanding their long-term health effects for mother and child. We explored methodological adaptations in a Non-Targeted Analysis (NTA) pipeline and evaluated the effects on chemical annotation and discovery for maternal and infant exposure. We focus on lesser-known/underreported chemicals in maternal and umbilical cord serum analyzed with liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). The samples were collected from a demographically diverse cohort of 296 maternal-cord pairs (n = 592) recruited in San Francisco Bay area. We developed and evaluated two data processing pipelines, primarily differing by detection frequency cut-off, to extract chemical features from non-targeted analysis (NTA). We annotated the detected chemical features by matching with EPA CompTox Chemicals Dashboard (n = 860,000 chemicals) and Human Metabolome Database (n = 3140 chemicals) and applied a Kendrick Mass Defect filter to detect homologous series. We collected fragmentation spectra (MS/MS) on a subset of serum samples and matched to an experimental MS/MS database within the MS-Dial website and other experimental MS/MS spectra collected from standards in our lab. We annotated ~72 % of the features (total features = 32,197, levels 1-4). We confirmed 22 compounds with analytical standards, tentatively identified 88 compounds with MS/MS spectra, and annotated 4862 exogenous chemicals with an in-house developed annotation algorithm. We detected 36 chemicals that appear to not have been previously reported in human blood and 9 chemicals that were reported in less than five studies. Our findings underline the importance of NTA in the discovery of lesser-known/unreported chemicals important to characterize human exposures.


Subject(s)
Exposome , Tandem Mass Spectrometry , Female , Pregnancy , Child , Humans , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , San Francisco
3.
Environ Sci Technol ; 57(51): 21917-21926, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091483

ABSTRACT

Co-occurrence of organic contaminants and arsenic oxoanions occurs often at polluted groundwater sites, but the effect of arsenite on the reactivity of sulfidized nanoscale zerovalent iron (SNZVI) used to remediate groundwater has not been evaluated. Here, we study the interaction of arsenite [As(III)] with SNZVI at the individual-particle scale to better understand the impacts on the SNZVI properties and reactivity. Surface and intraparticle accumulation of As was observed on hydrophilic FeS-Fe0 and hydrophobic FeS2-Fe0 particles, respectively. X-ray absorption spectroscopy indicated the presence of realgar-like As-S and elemental As0 species at low and high As/Fe concentration ratios, respectively. Single-particle inductively coupled plasma time-of-flight mass spectrometry analysis identified As-containing particles both with and without Fe. The probability of finding As-containing particles without Fe increased with the S-induced hydrophobicity of SNZVI. The interactions of SNZVI materials with coexisting arsenite inhibited their reactivity with water (∼5.8-230.7-fold), trichloroethylene (∼3.6-67.5-fold), and florfenicol (∼1.1-5.9-fold). However, the overall selectivity toward trichloroethylene and florfenicol relative to water was improved (up to 9.0-fold) because the surface-associated As increased the SNZVI hydrophobicity. These results indicate that reactions of SNZVI with arsenite can remove As from groundwater and improve the properties of SNZVI for dehalogenation selectivity.


Subject(s)
Arsenic , Arsenites , Groundwater , Trichloroethylene , Water Pollutants, Chemical , Iron/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Groundwater/chemistry , Water
4.
Sci Total Environ ; 902: 166409, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37597537

ABSTRACT

Deep subsurface stimulation processes often promote fluid-rock interactions that can lead to the formation of small colloidal particles that are suspected to migrate through the rock matrix, partially or fully clog pores and microfractures, and promote the mobilization of contaminants. Thus, the goal of this work is to understand the geochemical changes of the host rock in response to reservoir stimulation that promote the formation and migration of colloids. Two different carbonate-rich shales were exposed to different solution pHs (pH = 2 and 7). Iron and other mineral transformations at the shale-fluid interface were first characterized by synchrotron-based XRF mapping. Then, colloids that were able to migrate from the shale into the bulk fluid were characterized by synchrotron-based extended X-ray absorption structure (EXAFS), scanning electron microscopy (SEM), and single-particle inductively coupled plasma time-of-flight mass spectrometry (sp-icpTOF-MS). When exposed to the pH = 2 solution, extensive mineral dissolution and secondary precipitation was observed; iron-(oxyhydr)oxide colloids colocated with silicates were observed by SEM at the fluid-shale interfaces, and the mobilization of chromium and nickel with these iron colloids into the bulk fluid was detected by sp-icpTOF-MS. Iron EXAFS spectra of the solution at the shale-fluid interface suggests the rapid (within minutes) formation of ferrihydrite-like nanoparticles. Thus, we demonstrate that the pH neutralization promotes the mobilization of existing silicate minerals and the rapid formation of new iron colloids. These Fe colloids have the potential to migrate through the shale matrix and mobilize other heavy metals (such as Cr and Ni, in this study) and impacting groundwater quality, as well produced waters from these hydraulic fracturing operations.

5.
Environ Health Perspect ; 131(7): 77003, 2023 07.
Article in English | MEDLINE | ID: mdl-37466315

ABSTRACT

BACKGROUND: Nontargeted analysis (NTA) methods identify novel exposures; however, few chemicals have been quantified and interrogated with pregnancy complications. OBJECTIVES: We characterized levels of nine exogenous and endogenous chemicals in maternal and cord blood identified, selected, and confirmed in prior NTA steps, including linear and branched isomers perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), monoethylhexyl phthalate, 4-nitrophenol, tetraethylene glycol, tridecanedioic acid, octadecanedioic acid, and deoxycholic acid. We evaluated relationships between maternal and cord levels and between gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy in a diverse pregnancy cohort in San Francisco. METHODS: We collected matched maternal and cord serum samples at delivery from 302 pregnant study participants from the Chemicals in Our Bodies cohort in San Francisco. Chemicals were identified via NTA and quantified using targeted approaches. We calculated distributions and Spearman correlation coefficients testing the relationship of chemicals within and between the maternal and cord blood matrices. We used adjusted logistic regression to calculate the odds of GDM and hypertensive disorders of pregnancy associated with an interquartile range increase in maternal chemical exposures. RESULTS: We detected linear PFOS, PFHxS, octadecanedioic acid, and deoxycholic acid in at least 97% of maternal samples. Correlations ranged between -0.1 and 0.9. We observed strong correlations between cord and maternal levels of PFHxS, linear PFOS, and branched PFOS (coefficient=0.9, 0.8, and 0.8, respectively). An interquartile range increase in linear and branched PFOS, tridecanedioic acid, octadecanedioic acid, and deoxycholic acid was associated with increased odds ratio (OR) of GDM [OR=1.33 (95% CI: 0.89, 2.01), 1.24 (95% CI: 0.86, 1.80), 1.26 (95% CI: 0.93, 1.73), 1.24 (95% CI: 0.86, 1.80), and 1.23 (95% CI: 0.87, 1.75), respectively]. Tridecanedioic acid was positively associated with hypertensive disorders of pregnancy [OR=1.28 (95% CI: 0.90, 1.86)]. DISCUSSION: We identified both exogenous and endogenous chemicals seldom quantified in pregnant study participants that were also related to pregnancy complications and demonstrated the utility of NTA to identify chemical exposures of concern. https://doi.org/10.1289/EHP11546.


Subject(s)
Alkanesulfonic Acids , Diabetes, Gestational , Environmental Pollutants , Fluorocarbons , Hypertension, Pregnancy-Induced , Pregnancy Complications , Pregnancy , Female , Humans , Cross-Sectional Studies , Cohort Studies , Alkanesulfonates , Deoxycholic Acid
6.
Nanoscale ; 15(26): 11268-11279, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37345980

ABSTRACT

This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multi-element determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e.194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics.

7.
Environ Sci Technol ; 56(22): 15584-15593, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36255450

ABSTRACT

Finding and quantifying engineered nanomaterials (ENMs) in soil are challenging because of the abundance of natural nanomaterials (NNMs) with the same elemental composition, for example, TiO2. Isotopically enriched ENMs may be distinguished from NNMs with the same elemental composition using single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS) to measure multiple isotopes simultaneously within each ENM and NNM in soil, but the minimum isotope enrichment needed for detection of ENMs in soil is not known. Here, we determined the isotope enrichment needed for 47Ti-enriched TiO2 ENMs to be detectable in soil and assessed the effects of weathering on those requirements for less soluble TiO2 and more soluble CuO ENMs. The isotope-enriched ENMs were dosed into two different soils and were extracted and measured by spICP-TOF-MS after 1, 7, and 30 days. Isotope-enriched ENMs were recovered and detected for all three time points. The 47Ti-enriched TiO2 ENMs were detectable in Lufa 2.2 soil at a nominal dosed concentration of 10 mg-TiO2 kg-1 which is an environmentally relevant concentration in biosolid-amended soils. For distinguishing an ∼70 nm diameter TiO2 ENM from TiO2 NNMs in Lufa 2.2 soil, an ∼10 wt % 47Ti isotope-enrichment was required, and this enrichment requirement increases as the particle size decreases. This study is the first to evaluate the tracking ability of isotope-enriched ENMs at an individual particle level in soil and provides guidance on the isotope enrichment requirements for quantification of ENMs made from Earth-abundant elements in soils.


Subject(s)
Nanostructures , Soil , Soil/chemistry , Titanium , Mass Spectrometry
8.
Environ Sci Technol ; 56(5): 2990-3001, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35133134

ABSTRACT

Identifying engineered nanomaterials (ENMs) made from earth-abundant elements in soils is difficult because soil also contains natural nanomaterials (NNMs) containing similar elements. Here, machine learning models using elemental fingerprints and mass distributions of three TiO2 ENMs and Ti-based NNMs recovered from three natural soils measured by single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) was used to identify TiO2 ENMs in soil. Synthesized TiO2 ENMs were unassociated with other elements (>98%), while 40% of Ti-based ENM particles recovered from wastewater sludge had distinguishable elemental associations. All Ti-based NNMs extracted from soil had a similar chemical fingerprint despite the soils being from different regions, and >60% of Ti-containing NNMs had no measurable associated elements. A machine learning model best distinguished NNMs and ENMs when differences in Ti-mass distribution existed between them. A trained LR model could classify 100 nm TiO2 ENMs at concentrations of 150 mg kg-1 or greater. The presence of TiO2 ENMs in soil could be confirmed using this approach for most ENM-soil combinations, but the absence of a unique chemical fingerprint in a large fraction of both TiO2 ENMs and Ti-NNMs increases model uncertainty and hinders accurate quantification.


Subject(s)
Nanostructures , Soil , Machine Learning , Soil/chemistry , Titanium
9.
Environ Sci Technol ; 55(18): 12393-12402, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34505768

ABSTRACT

Particle-specific properties, including size and chemical speciation, affect the reactivity of mercury (Hg) in natural systems (e.g., dissolution or methylation). Here, terrestrial, river, and marine sediments were size-fractionated and characterized to correlate particle-specific properties of Hg-bearing solids with their bioavailability potential and measured biomethylation. Marine sediments contained ∼20-50% of the total Hg in the <0.5 µm size fraction, compared to only 0.5 and 3.0% in this size fraction for terrestrial and river sediments, respectively. X-ray absorption spectroscopy (XAS) analysis indicated that metacinnabar (ß-HgS) was the main mercury species in a marine sediment, whereas organic Hg-thiol (Hg(SR)2) was the main mercury species in a terrestrial sediment. Single-particle inductively coupled plasma time-of-flight mass spectrometry analysis of the marine sediment suggests that half of the Hg in the <0.5 µm size fraction existed as individual nanoparticles, which were ß-HgS based on XAS analyses. Glutathione-extractable mercury was higher for samples containing Hg(SR)2 species than ß-HgS species and correlated well with the amount of Hg biomethylation. This particle-scale understanding of how Hg speciation and particle size affect mercury bioavailability potential helps explain the heterogeneity in Hg methylation in natural sediments.


Subject(s)
Mercury , Water Pollutants, Chemical , Biological Availability , Geologic Sediments , Mercury/analysis , Particle Size , Rivers , Water Pollutants, Chemical/analysis
10.
Environ Sci Technol ; 55(2): 1231-1241, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33404237

ABSTRACT

Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon. The nanogel disperses in both aqueous and hydrocarbon phases. It has a high sorption affinity for dissolved Hg(II) complexes and Hg-dissolved organic matter complexes found in produced water and elemental (Hg0) and soluble Hg-alkyl thiol species found in hydrocarbons. X-ray absorption spectroscopy analysis indicates that the sorbed mercury is transformed to a surface-bound Hg(SR)2 species in both water and hydrocarbon regardless of its initial speciation. The nanogel had high affinity to native mercury species present in real produced water (>99.5% removal) and in natural gas condensate (>85% removal) samples, removing majority of the mercury species using only a 50 mg L-1 applied dose. This thiolated amphiphilic polymeric nanogel has significant potential to remove environmentally relevant mercury species from both water and hydrocarbon at low applied doses, outperforming reported sorbents like sulfur-impregnated activated carbons because of the mass of accessible thiol groups in the nanogel.


Subject(s)
Mercury , Hydrocarbons , Nanogels , Polymers , Sulfhydryl Compounds , Water
11.
Anal Bioanal Chem ; 413(2): 299-314, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33123761

ABSTRACT

The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.


Subject(s)
Mass Spectrometry/methods , Methanol/chemistry , Nanomedicine/methods , Nanoparticles/chemistry , Plants/metabolism , Water/chemistry , Copper/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Methanol/analysis , Particle Size , Plant Leaves/metabolism , Reproducibility of Results , Solubility , Titanium/chemistry , Zinc Oxide/chemistry
12.
Chemosphere ; 267: 128885, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33218719

ABSTRACT

Here we compared the efficiency of Cu extraction (dissolved + particulate) from two soils dosed with CuO nanoparticles (NPs) at 50 or 250 mg kg-1 by pore water collection, and single- and multi-step soil extraction tests. Pore water collection recovered low levels of Cu (<0.18%, regardless of soil type or Cu dose). Single soil extraction by either CaCl2 or DI water led to higher Cu recovery than pore water collection, but still <3% of total dose. These methods were useful for assessing the labile Cu ions pool. This fraction is controlled by Cu2+ dissolved from CuO NPs and it varies with time and soil type. Particulate Cu was poorly retrieved (<0.7%) by pore water extraction and by single-step soil extraction using CaCl2 solution or water. Multi-step extraction including dispersing and metal-chelating agents allowed for simultaneous characterization of dissolved Cu (total ionic Cu2+, 24-49% of dosed Cu), extractable CuO NPs (reversibly attached, 15-26% of dosed Cu), and non-extractable CuO NPs (irreversibly attached, 36-50% of dosed Cu), and it could describe the aging of NPs along 30 d. This method extracted a significantly higher concentration of Cu than pore water collection and was less sensitive to method parameters (e.g. filtration). This multi-step method can reduce pore water extraction-related factors that may confound the interpretation of environmental exposure data in NPs studies, and describe upper limits of both exchangeable Cu2+ and dispersible CuO NPs in soil that can potentially become bioavailable to plants and organisms and thus provide a sounder basis for risks evaluations.


Subject(s)
Metal Nanoparticles , Nanoparticles , Soil Pollutants , Copper , Oxides , Soil , Soil Pollutants/analysis , Water
13.
Sci Total Environ ; 749: 141217, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-32827812

ABSTRACT

The effects of a model natural organic matter (NOM) on the transport of Hg(II) into diffusive gradient in thin-film devices (DGTs) was evaluated in order to better understand their ability to measure colloidal Hg species in porewater. The presence of NOM significantly reduced the diffusivity of the Hg(II) species and the reduction was dependent upon NOM to Hg(II) ratio. This relationship was modeled by determining the Hg(II) partition coefficients (Kd) of size fractionated NOM obtained by ultrafiltration and estimating the Hg diffusivity through the DGT for the different NOM size fractions across a range of Hg-NOM ratios. The estimated diffusivities were consistent with experimental observations of uptake into the DGT. Overall, this study indicated that Hg(II) associated with NOM passes into a DGT, however the transport is slowed in accordance with the diffusivity of the NOM to which the Hg(II) is associated. Thus, the Hg-NOM association and complex diffusivities need to be considered when relating DGT uptake to Hg porewater concentration. The results also suggest that Hg(II) associated with colloidal or larger particles of negligible diffusivity are unlikely to contribute significantly to DGT measurements.

14.
Environ Sci Technol ; 54(14): 8699-8709, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32579348

ABSTRACT

The application of nanoparticles (NPs) to soils, as either fertilizers or fungicides (e.g., CuO NPs), has been proposed to improve the sustainability of agriculture. The observed effects could result directly from the NP-plant interactions or indirectly through effects on the soil microbiome. The objective of this study was to assess the effects of CuO NPs on the changes in the bacterial community structure and nitrogen-cycling-associated functions in a high pH soil and to correlate these changes with nitrate accumulation, soil parameter changes, and plant growth over 28 days. Triticum aestivum seedlings were exposed to 50 mg/kg CuO NPs, 50 mg/kg CuSO4, or 0.5 mg/kg CuSO4 in a standard soil (Lufa 2.1 soil, pH adjusted to 7.6). While Cu treatments reduced nitrate accumulation in the bulk soil, the effects were opposite in the rhizosphere (the soil influenced by root exudates). While nitrate accumulation in bulk soil negatively correlated with total Cu concentration, part of the nitrate concentration in the rhizosphere was explained by root uptake during plant growth, the rest being modulated by Cu treatments. The abundance of genes involved in the nitrogen cycle in the rhizosphere soil correlated with the ionic copper concentration. The increased nitrate concentration in the rhizosphere correlated with an increase of the gene abundance related to the nitrogen fixation and a decrease of denitrification gene abundance. Microbial diversity in bulk or rhizosphere soil under the different treatments alone could not explain these variations, while differences in the assemblages of bacteria associated with these functional gene abundances gave good insights. This study highlights the complexity of microbial N-related function in the rhizosphere and the need to characterize the rhizosphere soil, plant growth and root activity, NP (bio)transformations, along with microbial networks, to understand the impact of agrochemicals (here CuO NPs) on soil fertility.


Subject(s)
Nanoparticles , Soil , Bacteria/genetics , Copper , Nitrogen , Nitrogen Cycle , Rhizosphere , Soil Microbiology , Triticum
15.
Anal Chem ; 92(14): 9620-9628, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32520530

ABSTRACT

The objective of this study is to assess how method parameters impact the extraction of moderately soluble CuO nanoparticles (NPs) from a standard natural soil (LUFA 2.1) suitable for chemical analysis. The extraction procedure is comprised of three steps: (i) preconditioning the soil to increase the sodium adsorption ratio, (ii) extracting colloids/NPs from the soil matrix using sonication and a dispersing agent, and (iii) separating the dissolved and nanoparticulate CuO fractions using cloud point extraction. Method parameters of the extraction procedure, including sonication, number of extraction cycles, and dispersing agent, were adjusted to achieve the highest extraction of CuO NPs, while minimizing dissolution. The maximum recovery of CuO NPs ranged from 31% to 42% for an amended concentration range of 10-250 mg-Cu (kg soil)-1 using a preconditioning step to exchange divalent cations for monovalent ions, 0.2% carboxymethyl cellulose (CMC) 700 kg mol-1 as the dispersing agent, probe sonication for 1 min, 3 extraction cycles, and a 1:10 soil-to-liquid ratio. CuO NPs that are polyvinylpyrrolidone (PVP)-coated with a greater stability against aggregation had significantly higher extractability and dissolution. This procedure is the first to effectively extract moderately soluble NPs from soil and experimentally separate them from their dissolved fraction and can be applied to other moderately soluble metal containing natural, incidental, or engineered NPs in soil.

16.
Nanoscale ; 12(6): 3630-3636, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31998910

ABSTRACT

Plant nanobiotechnology has the potential to revolutionize agriculture. However, the lack of effective methods to deliver nanoparticles (NPs) to the precise locations in plants where they are needed impedes these technological innovations. Here, model gold nanoparticles (AuNP) were coated with citrate, bovine serum albumin (BSA) as a protein control, or LM6-M, an antibody with an affinity for functional groups unique to stomata on leaf surfaces to deliver the AuNPs to stomata. One-month-old Vicia faba leaves were exposed via drop deposition to aqueous suspensions of LM6-M-coated AuNPs and allowed to air dry. After rinsing, Au distribution on the leaf surface was investigated by enhanced dark-field microscopy and X-ray fluorescence mapping. While citrate-coated AuNPs randomly covered the plant leaves, LM6M-AuNPs strongly adhered to the stomata and remained on the leaf surface after rinsing, and BSA-AuNPs specifically targeted trichome hairs. To the authors' knowledge, this is the first report of active targeting of live leaf structures using NPs coated with molecular recognition molecules. This proof-of-concept study provides a strategy for future targeted nanopesticide delivery research.


Subject(s)
Antibodies/metabolism , Gold/metabolism , Metal Nanoparticles/chemistry , Plant Stomata/metabolism , Trichomes/metabolism , Antibodies/chemistry , Citrates/chemistry , Citrates/metabolism , Gold/chemistry , Plant Stomata/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Trichomes/chemistry , Vicia faba/chemistry , Vicia faba/metabolism
17.
ACS Nano ; 13(5): 5291-5305, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31074967

ABSTRACT

Nanoenabled foliar-applied agrochemicals can potentially be safer and more efficient than conventional products. However, limited understanding about how nanoparticle properties influence their interactions with plant leaves, uptake, translocation through the mesophyll to the vasculature, and transport to the rest of the plant prevents rational design. This study used a combination of Au quantification and spatial analysis to investigate how size (3, 10, or 50 nm) and coating chemistry (PVP versus citrate) of gold nanoparticles (AuNPs) influence these processes. Following wheat foliar exposure to AuNPs suspensions (∼280 ng per plant), adhesion on the leaf surface was increased for smaller sizes, and PVP-AuNPs compared to citrate-AuNPs. After 2 weeks, there was incomplete uptake of citrate-AuNPs with some AuNPs remaining on the outside of the cuticle layer. However, the fraction of citrate-AuNPs that had entered the leaf was translocated efficiently to the plant vasculature. In contrast, for similar sizes, virtually all of the PVP-AuNPs crossed the cuticle layer after 2 weeks, but its transport through the mesophyll cells was lower. As a consequence of PVP-AuNP accumulation in the leaf mesophyll, wheat photosynthesis was impaired. Regardless of their coating and sizes, the majority of the transported AuNPs accumulated in younger shoots (10-30%) and in roots (10-25%), and 5-15% of the NPs <50 nm were exuded into the rhizosphere soil. A greater fraction of larger sizes AuNPs (presenting lower ζ potentials) was transported to the roots. The key hypotheses about the NPs physical-chemical and plant physiology parameters that may matter to predict leaf-to-rhizosphere transport are also discussed.


Subject(s)
Metal Nanoparticles/chemistry , Plant Leaves/metabolism , Plant Roots/metabolism , Triticum/metabolism , Biological Transport/drug effects , Metal Nanoparticles/administration & dosage , Particle Size , Plant Leaves/drug effects , Plant Roots/drug effects , Rhizosphere , Triticum/drug effects
18.
Chemosphere ; 150: 650-658, 2016 May.
Article in English | MEDLINE | ID: mdl-26897520

ABSTRACT

Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7-9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6-8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 µg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4-9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency.


Subject(s)
Arsenites/analysis , Flocculation , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Arsenites/chemistry , Catalysis , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Humic Substances/analysis , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Surface Properties , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...