Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photoacoustics ; 38: 100610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38726025

ABSTRACT

Expansion microscopy (ExM) is a promising technology that enables nanoscale imaging on conventional optical microscopes by physically magnifying the specimens. Here, we report the development of a strategy that enables i) on-demand labeling of subcellular organelles in live cells for ExM through transfection of fluorescent proteins that are well-retained during the expansion procedure; and ii) non-fluorescent chromogenic color-development towards efficient bright-field and photoacoustic imaging in both planar and volumetric formats, which is applicable to both cultured cells and biological tissues. Compared to the conventional ExM methods, our strategy provides an expanded toolkit, which we term as expansion fluorescence and photoacoustic microscopy (ExFLPAM), by allowing on-demand fluorescent protein labeling of cultured cells, as well as non-fluorescent absorption contrast-imaging of biological samples.

2.
bioRxiv ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37503226

ABSTRACT

Expansion microscopy (ExM) is a promising technology that enables nanoscale imaging on conventional optical microscopes by physically magnifying the specimens. Here, we report the development of a strategy that enables i) on-demand labeling of subcellular organelles in live cells for ExM through transfection of fluorescent proteins that are well-retained during the expansion procedure; and ii) non-fluorescent chromogenic color-development towards efficient bright-field and photoacoustic imaging in both planar and volumetric formats, which is applicable to both cultured cells and biological tissues. Compared to the conventional ExM methods, our strategy provides an expanded toolkit, which we term as expansion fluorescence and photoacoustic microscopy (ExFLPAM), by allowing on-demand fluorescent protein labeling of cultured cells, as well as non-fluorescent absorption contrast-imaging of biological samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...