Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 200: 72-77, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31036227

ABSTRACT

The sensitive monitoring of mercury (II) selenide nanoparticles (HgSe NPs) is of great potential relevance in environmental studies, since such NPs are believed to be the ultimate metabolic product of the lifesaving mechanism pathway of Hg detoxification in biological systems. In this context, we take advantage of using gold-nanostructured screen-printed carbon electrodes (SPCE-Au) for the rapid, simple and sensitive electrochemical quantification of engineered water-stable HgSe NPs, as an advantageous alternative to conventional elemental analysis techniques. HgSe NPs are first treated in an optimized oxidative/acidic medium for Hg2+ release, followed by sensitive electrochemical detection by anodic stripping voltammetry (ASV). To the best of our knowledge, this is the first time that water-stable HgSe NPs are quantified using electrochemical techniques. The low limit of detection achieved (3.86 × 107 HgSe NPs/mL) together with the excellent repeatability (RSD: 3%), reproducibility (RSD: 5%) and trueness (relative error: 10%), the good performance in real sea water samples (recoveries of the analytical signal higher than 90%) and the simplicity/low cost of analysis make our method an ideal candidate for HgSe NPs monitoring in future environmental studies.


Subject(s)
Electrochemical Techniques , Environmental Monitoring , Mercury/analysis , Nanoparticles/analysis , Selenium/analysis , Water Pollutants, Chemical/analysis
2.
Anal Chem ; 91(5): 3567-3574, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30727735

ABSTRACT

A current remaining challenge in nanotechnology is the fast and reliable determination of the ratios between engineered nanoparticles and the species attached to their surface after chemical functionalization. The approach proposed herein based on the online coupling of asymmetric flow field-flow fractionation (AF4) with inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) allows for the first time the direct determination of such ratios in CdSe/ZnS core-shell quantum dot:rat monoclonal IgG2a antibody (QD:Ab) conjugate mixtures in a single run without any previous sample preparation (i.e., derivatization). AF4 provides full recovery and adequate resolution of the resulting bioconjugate from the excess of nanoparticles and proteins used in the different bioconjugation mixtures (1:1, 2:1, and 3:1 QD:Ab molar ratios were assessed). The point-by-point determination by ICP-MS/MS of the metal to sulfur ratios along the bioconjugate fractographic peak allowed disclosing the mixture of the different species in the bioconjugated sample, providing not only the limits of the range of QD:Ab ratios in the different bioconjugate species resulting after functionalization but also a good estimation of their individual relative abundance in the mixture. Interestingly, a wide variety of compositions were observed for the different bioconjugate mixtures studied (QD:Ab molar ratios ranging from 0.27 to 4.6). The resulting weighted QD:Ab ratio computed in this way for each bioconjugate peak matches well with both the global (average) QD:Ab ratio experimentally obtained by the simpler peak area ratio computation and the theoretical QD:Ab molar ratios assayed, which internally validates the procedure developed.


Subject(s)
Cadmium Compounds/analysis , Fractionation, Field Flow , Immunoglobulin G/analysis , Nanoparticles/analysis , Quantum Dots/analysis , Selenium Compounds/analysis , Sulfides/analysis , Zinc Compounds/analysis , Nanotechnology , Tandem Mass Spectrometry
3.
Talanta ; 192: 463-470, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30348419

ABSTRACT

Near infrared (NIR) emitting Ag2S quantum dots have been synthesized, characterized and evaluated for chemical sensing applications. After their optical characterization, it was observed that the Ag2S quantum dots present both, excitation and emission in the NIR region, and an excellent quantum yield of 33.2%. These features are of great value for many biological applications, since autofluorescence of biological tissues or cells is minimized, and also for environmental applications, where other fluorescent concomitant species with excitation and emission in the ultraviolet-visible region might be present. Different purification procedures were evaluated in order to obtain a stable and homogeneous population of nanoparticles, which is necessary to perform quantitative analysis (e.g.: mass spectrometry-based applications), as well as to obtain a narrow NIR emission spectrum for optical applications. Comprehensive characterization using X-ray diffraction, transmission electron microscopy, and asymmetric flow field flow fractionation coupled to inductively coupled plasma-mass spectrometry has been performed to obtain parameters not easily achieved and of great interest in different research areas, such as the nanoparticle concentration NIR-emitting nanoparticles, and the surface ligand density, which directly affects to the interactions of the nanoparticles with their close environment, including unspecific adsorptions, cellular uptake, macrophage interaction, etc. Finally, the capability for sensing analytes of environmental interest based on direct-interactions of a reactive compound with the surface of the nanoparticle has been also evaluated. Quenching of the NIR emission upon interaction of the Ag2S quantum dots with cyanide ions was observed. Hence, a rapid, selective and highly sensitive methodology was developed for the detection of cyanide in natural waters.

4.
Bioconjug Chem ; 29(8): 2646-2653, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29989798

ABSTRACT

The use of functionalized magnetic particles is increasing because they simplify the analytical process and yield promising results in a wide range of applications. Particularly, streptavidin-coated magnetic beads offer the possibility of rapid and very efficient grafting of biomolecules. Unfortunately, current methods to monitor and compute this grafting process are cumbersome and scarce. We describe herein a simple, rapid, and reliable chemiluminescent assay we have developed to check the grafting rate of functionalized magnetic beads. The power of the assay also relies on its ability to predict the amount of ligands required to obtain a precise grafting rate. In addition, results were correlated with a more general parameter in material functionalization characterization like surface ligand density. Finally, the assay was validated for a wide variety of biotinylated biomolecule sizes, ranging from small molecules (around 200 Da) to antibodies (around 150 kDa). This approach will allow a precise quantification and prediction of the functionalization of magnetic particles that is of enormous importance for quality control in many applications.


Subject(s)
Luminescent Measurements/standards , Magnetics , Proteins/chemistry , Streptavidin/chemistry , Biological Assay , Biotinylation , Horseradish Peroxidase/chemistry , Ligands , Molecular Weight , Surface Properties
5.
J Chromatogr A ; 1519: 156-161, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28888679

ABSTRACT

Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed.


Subject(s)
Chemistry Techniques, Analytical/methods , Fractionation, Field Flow , Mass Spectrometry , Nanoparticles/analysis , Antibodies/metabolism , Hydrophobic and Hydrophilic Interactions , Ligands , Nanoparticles/metabolism , Nanoparticles/ultrastructure , Quantum Dots/analysis , Quantum Dots/metabolism , Thioctic Acid/analogs & derivatives , Thioctic Acid/chemistry
6.
Anal Biochem ; 530: 9-16, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28476531

ABSTRACT

Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic (77Se-selenite) and organic zwitterionic (76Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics.


Subject(s)
Blood Proteins/analysis , Plasma/chemistry , Radioactive Tracers , Selenium Radioisotopes/analysis , Selenium/analysis , Selenomethionine/analysis , Blood Proteins/isolation & purification , Mass Spectrometry , Molecular Weight , Selenium/chemistry , Selenium/isolation & purification , Selenium Radioisotopes/chemistry , Selenium Radioisotopes/isolation & purification , Selenomethionine/chemistry , Selenomethionine/isolation & purification
7.
PLoS One ; 12(2): e0170869, 2017.
Article in English | MEDLINE | ID: mdl-28151990

ABSTRACT

Antimony is a metalloid that affects biological functions in humans due to a mechanism still not understood. There is no doubt that the toxicity and physicochemical properties of Sb are strongly related with its chemical state. In this paper, the interaction between Sb(III) and Sb(V) with bovine serum albumin (BSA) was investigated in vitro by fluorescence spectroscopy, and circular dichroism (CD) under simulated physiological conditions. Moreover, the coupling of the separation technique, asymmetric flow field-flow fractionation, with elemental mass spectrometry to understand the interaction of Sb(V) and Sb(III) with the BSA was also used. Our results showed a different behaviour of Sb(III) vs. Sb(V) regarding their effects on the interaction with the BSA. The effects in terms of protein aggregates and conformational changes were higher in the presence of Sb(III) compared to Sb(V) which may explain the differences in toxicity between both Sb species in vivo. Obtained results demonstrated the protective effect of GSH that modifies the degree of interaction between the Sb species with BSA. Interestingly, in our experiments it was possible to detect an interaction between BSA and Sb species, which may be related with the presence of labile complex between the Sb and a protein for the first time.


Subject(s)
Antimony/toxicity , Protein Aggregates/drug effects , Protein Conformation/drug effects , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/drug effects , Animals , Antimony/chemistry , Cattle , Chromatography, Gel , Circular Dichroism , Fractionation, Field Flow , Glutathione/chemistry , Glutathione/pharmacology , Humans , In Vitro Techniques , Protein Structure, Secondary/drug effects , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...