Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Neurodegener ; 19(1): 45, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853250

ABSTRACT

BACKGROUND: Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. METHODS: We analyzed RNA-seq datasets from mouse and human neurons overexpressing TDP-43 to explore species specific splicing patterns. We explored the dynamics between TDP-43 levels and exon repression in vitro. Furthermore we analyzed human brain samples and publicly available RNA datasets to explore the relationship between exon repression and disease. RESULTS: Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. CONCLUSIONS: Our findings emphasize the need for caution in interpreting TDP-43 overexpression data and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy.


Subject(s)
DNA-Binding Proteins , Exons , Humans , Exons/genetics , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Neurons/metabolism , Brain/metabolism , RNA Splicing/genetics , Cell Nucleus/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology
3.
Nat Med ; 30(2): 382-393, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278991

ABSTRACT

Although loss of TAR DNA-binding protein 43 kDa (TDP-43) splicing repression is well documented in postmortem tissues of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), whether this abnormality occurs during early-stage disease remains unresolved. Cryptic exon inclusion reflects loss of function of TDP-43, and thus detection of proteins containing cryptic exon-encoded neoepitopes in cerebrospinal fluid (CSF) or blood could reveal the earliest stages of TDP-43 dysregulation in patients. Here we use a newly characterized monoclonal antibody specific to a TDP-43-dependent cryptic epitope (encoded by the cryptic exon found in HDGFL2) to show that loss of TDP-43 splicing repression occurs in ALS-FTD, including in presymptomatic C9orf72 mutation carriers. Cryptic hepatoma-derived growth factor-like protein 2 (HDGFL2) accumulates in CSF at significantly higher levels in familial ALS-FTD and sporadic ALS compared with controls and is elevated earlier than neurofilament light and phosphorylated neurofilament heavy chain protein levels in familial disease. Cryptic HDGFL2 can also be detected in blood of individuals with ALS-FTD, including in presymptomatic C9orf72 mutation carriers, and accumulates at levels highly correlated with those in CSF. Our findings indicate that loss of TDP-43 cryptic splicing repression occurs early in disease progression, even presymptomatically, and that detection of the HDGFL2 cryptic neoepitope serves as a potential diagnostic biomarker for ALS, which should facilitate patient recruitment and measurement of target engagement in clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Biomarkers/cerebrospinal fluid
4.
bioRxiv ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37215013

ABSTRACT

Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. Our findings emphasize the need for caution in interpreting TDP-43 overexpression data, and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy. Understanding the subtle aspects of TDP-43 toxicity within different subcellular locations is essential for the development of therapies targeting neurodegenerative disease.

5.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36789434

ABSTRACT

Loss of TAR DNA-binding protein 43 kDa (TDP-43) splicing repression is well-documented in postmortem tissues of amyotrophic lateral sclerosis (ALS), yet whether this abnormality occurs during early-stage disease remains unresolved. Cryptic exon inclusion reflects functional loss of TDP-43, and thus detection of cryptic exon-encoded peptides in cerebrospinal fluid (CSF) could reveal the earliest stages of TDP-43 dysregulation in patients. Here, we use a newly characterized monoclonal antibody specific to a TDP-43-dependent cryptic epitope (encoded by the cryptic exon found in HDGFL2) to show that loss of TDP-43 splicing repression occurs in C9ORF72-associated ALS, including pre-symptomatic mutation carriers. In contrast to neurofilament light and heavy chain proteins, cryptic HDGFL2 accumulates in CSF at higher levels during early stages of disease. Our findings indicate that loss of TDP-43 splicing repression occurs early in disease progression, even pre-symptomatically, and that detection of HDGFL2's cryptic neoepitope may serve as a prognostic test for ALS which should facilitate patient recruitment and measurement of target engagement in clinical trials.

6.
Nat Commun ; 13(1): 5773, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36182931

ABSTRACT

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.


Subject(s)
Calcium , RNA Splicing , Alternative Splicing/genetics , Base Sequence , Exons/genetics , Gene Expression Regulation , Introns/genetics
SELECTION OF CITATIONS
SEARCH DETAIL