Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072048

ABSTRACT

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mechanotransduction, Cellular , Myofibroblasts , S100 Calcium-Binding Protein A4 , Animals , Mice , Cell Transdifferentiation , Fibrosis , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
2.
Biochem J ; 480(5): 335-362, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36920093

ABSTRACT

Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.


Subject(s)
Actins , Pinocytosis , Endocytosis , Signal Transduction , Macrophages
3.
FEBS Lett ; 596(4): 417-426, 2022 02.
Article in English | MEDLINE | ID: mdl-34990021

ABSTRACT

PI3Kß is required for invadopodia-mediated matrix degradation by breast cancer cells. Invadopodia maturation requires GPCR activation of PI3Kß and its coupling to SHIP2 to produce PI(3,4)P2 . We now test whether selectivity for PI3Kß is preserved under conditions of mutational increases in PI3K activity. In breast cancer cells where PI3Kß is inhibited, short-chain diC8-PIP3 rescues gelatin degradation in a SHIP2-dependent manner; rescue by diC8-PI(3,4)P2 is SHIP2-independent. Surprisingly, the expression of either activated PI3Kß or PI3Kα mutants rescued the effects of PI3Kß inhibition. In both cases, gelatin degradation was SHIP2-dependent. These data confirm the requirement for PIP3 conversion to PI(3,4)P2 for invadopodia function and suggest that selectivity for distinct PI3K isotypes may be obviated by mutational activation of the PI3K pathway.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Extracellular Matrix/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Podosomes/metabolism , Cell Line, Tumor , Cell Movement , Class I Phosphatidylinositol 3-Kinases/metabolism , Diglycerides/chemistry , Extracellular Matrix/ultrastructure , Female , Gene Expression Regulation , HEK293 Cells , Humans , Mammary Glands, Human/cytology , Mammary Glands, Human/metabolism , Mutation , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Podosomes/ultrastructure , Signal Transduction
4.
Sci Rep ; 11(1): 2203, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500475

ABSTRACT

S100A4, a member of the S100 family of multifunctional calcium-binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in differentiating fiber cells of the ocular lens and that S100A4 (-/-) knockout mice develop late-onset cortical cataracts. Transcriptome profiling of lenses from S100A4 (-/-) mice revealed a robust increase in the expression of multiple photoreceptor- and Müller glia-specific genes, as well as the olfactory sensory neuron-specific gene, S100A5. This aberrant transcriptional profile is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of differentially expressed genes in S100A4 (-/-) lenses identified Crx and Nrl transcription factors as the most significant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high-density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this finding, we further documented that S100A4 (-/-) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together, our findings suggest that S100A4 suppresses the expression of retinal genes during lens differentiation plausibly via a mechanism involving changes in histone methylation.


Subject(s)
Cataract/pathology , Cell Differentiation , Lens, Crystalline/metabolism , Retina/pathology , S100 Calcium-Binding Protein A4/deficiency , Actin Cytoskeleton/metabolism , Animals , Biological Transport , Calcium/metabolism , Cataract/genetics , Cell Lineage/genetics , Ependymoglial Cells/metabolism , Gap Junctions/metabolism , Gene Deletion , Glutamic Acid/metabolism , Histones/metabolism , Lysine/metabolism , Methylation , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Olfactory Receptor Neurons/metabolism , Organ Specificity , Photoreceptor Cells, Vertebrate/metabolism , Principal Component Analysis , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism , Transcriptome/genetics , Up-Regulation/genetics
5.
Nature ; 583(7814): E15, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32541969

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
J Cell Sci ; 132(16)2019 08 16.
Article in English | MEDLINE | ID: mdl-31409694

ABSTRACT

Macropinocytosis is an actin-dependent but clathrin-independent endocytic process by which cells nonselectively take up large aliquots of extracellular material. Macropinocytosis is used for immune surveillance by dendritic cells, as a route of infection by viruses and protozoa, and as a nutrient uptake pathway in tumor cells. In this study, we explore the role of class I phosphoinositide 3-kinases (PI3Ks) during ligand-stimulated macropinocytosis. We find that macropinocytosis in response to receptor tyrosine kinase activation is strikingly dependent on a single class I PI3K isoform, namely PI3Kß (containing the p110ß catalytic subunit encoded by PIK3CB). Loss of PI3Kß expression or activity blocks macropinocytosis at early steps, before the formation of circular dorsal ruffles, but also plays a role in later steps, downstream from Rac1 activation. PI3Kß is also required for the elevated levels of constitutive macropinocytosis found in tumor cells that are defective for the PTEN tumor suppressor. Our data shed new light on PI3K signaling during macropinocytosis, and suggest new therapeutic uses for pharmacological inhibitors of PI3Kß.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/biosynthesis , Intercellular Signaling Peptides and Proteins/metabolism , Pinocytosis , Signal Transduction , Animals , Class I Phosphatidylinositol 3-Kinases/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , NIH 3T3 Cells , Neuropeptides/genetics , Neuropeptides/metabolism , PC-3 Cells , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
7.
Mol Biol Cell ; 30(18): 2367-2376, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31318314

ABSTRACT

The invasion of tumor cells from the primary tumor is mediated by invadopodia, actin-rich protrusive organelles that secrete matrix metalloproteases and degrade the extracellular matrix. This coupling between protrusive activity and matrix degradation facilitates tumor invasion. We previously reported that the PI3Kß isoform of PI 3-kinase, which is regulated by both receptor tyrosine kinases and G protein-coupled receptors, is required for invasion and gelatin degradation in breast cancer cells. We have now defined the mechanism by which PI3Kß regulates invadopodia. We find that PI3Kß is specifically activated downstream from integrins, and is required for integrin-stimulated spreading and haptotaxis as well as integrin-stimulated invadopodia formation. Surprisingly, these integrin-stimulated and PI3Kß-dependent responses require the production of PI(3,4)P2 by the phosphoinositide 5'-phosphatase SHIP2. Thus, integrin activation of PI3Kß is coupled to the SHIP2-dependent production of PI(3,4)P2, which regulates the recruitment of PH domain-containing scaffolds such as lamellipodin to invadopodia. These findings provide novel mechanistic insight into the role of PI3Kß in the regulation of invadopodia in breast cancer cells.


Subject(s)
Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositols/metabolism , Podosomes/metabolism , Actins/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Chemotaxis/physiology , Extracellular Matrix/metabolism , Female , Humans , Integrins/metabolism , Integrins/physiology , Neoplasm Invasiveness/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Podosomes/physiology , Signal Transduction/physiology
8.
Elife ; 82019 06 07.
Article in English | MEDLINE | ID: mdl-31172941

ABSTRACT

Cellular ESCRT machinery plays pivotal role in HIV-1 budding and release. Extracellular stimuli that modulate HIV-1 egress are currently unknown. We found that CCL2 induced by HIV-1 clade B (HIV-1B) infection of macrophages enhanced virus production, while CCL2 immuno-depletion reversed this effect. Additionally, HIV-1 clade C (HIV-1C) was refractory to CCL2 levels. We show that CCL2-mediated increase in virus production requires Gag late motif LYPX present in HIV-1B, but absent in HIV-1C, and ALIX protein that recruits ESCRT III complex. CCL2 immuno-depletion sequestered ALIX to F-actin structures, while CCL2 addition mobilized it to cytoplasm facilitating Gag-ALIX binding. The LYPX motif improves virus replication and its absence renders the virus less fit. Interestingly, novel variants of HIV-1C with PYRE/PYKE tetrapeptide insertions in Gag-p6 conferred ALIX binding, CCL2-responsiveness and enhanced virus replication. These results, for the first time, indicate that CCL2 mediates ALIX mobilization from F-actin and enhances HIV-1 release and fitness.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Chemokine CCL2/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , HIV-1/growth & development , Host-Pathogen Interactions , Virus Release , gag Gene Products, Human Immunodeficiency Virus/metabolism , Cells, Cultured , Humans , Macrophages/virology
9.
J Biol Chem ; 294(12): 4621-4633, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30659094

ABSTRACT

Phosphoinositide 3-kinase ß (PI3Kß) is regulated by receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and small GTPases such as Rac1 and Rab5. Our lab previously identified two residues (Gln596 and Ile597) in the helical domain of the catalytic subunit (p110ß) of PI3Kß whose mutation disrupts binding to Rab5. To better define the Rab5-p110ß interface, we performed alanine-scanning mutagenesis and analyzed Rab5 binding with an in vitro pulldown assay with GST-Rab5GTP Of the 35 p110ß helical domain mutants assayed, 11 disrupted binding to Rab5 without affecting Rac1 binding, basal lipid kinase activity, or Gßγ-stimulated kinase activity. These mutants defined the Rab5-binding interface within p110ß as consisting of two perpendicular α-helices in the helical domain that are adjacent to the initially identified Gln596 and Ile597 residues. Analysis of the Rab5-PI3Kß interaction by hydrogen-deuterium exchange MS identified p110ß peptides that overlap with these helices; no interactions were detected between Rab5 and other regions of p110ß or p85α. Similarly, the binding of Rab5 to isolated p85α could not be detected, and mutations in the Ras-binding domain (RBD) of p110ß had no effect on Rab5 binding. Whereas soluble Rab5 did not affect PI3Kß activity in vitro, the interaction of these two proteins was critical for chemotaxis, invasion, and gelatin degradation by breast cancer cells. Our results define a single, discrete Rab5-binding site in the p110ß helical domain, which may be useful for generating inhibitors to better define the physiological role of Rab5-PI3Kß coupling in vivo.


Subject(s)
Breast Neoplasms/pathology , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinase/metabolism , rab5 GTP-Binding Proteins/metabolism , Binding Sites , Breast Neoplasms/metabolism , Cell Line, Tumor , Chemotaxis , Gelatin/metabolism , HEK293 Cells , Humans , Mass Spectrometry/methods , Mutation , Phosphatidylinositol 3-Kinase/genetics , Protein Binding
10.
Endocrinology ; 160(3): 536-555, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30601996

ABSTRACT

The phosphoinositide 3-kinase (PI3K) family includes eight distinct catalytic subunits and seven regulatory subunits. Only two PI3Ks are directly regulated downstream from G protein-coupled receptors (GPCRs): the class I enzymes PI3Kß and PI3Kγ. Both enzymes produce phosphatidylinositol 3,4,5-trisposphate in vivo and are regulated by both heterotrimeric G proteins and small GTPases from the Ras or Rho families. However, PI3Kß is also regulated by direct interactions with receptor tyrosine kinases (RTKs) and their tyrosine phosphorylated substrates, and similar to the class II and III PI3Ks, it binds activated Rab5. The unusually complex regulation of PI3Kß by small and trimeric G proteins and RTKs leads to a rich landscape of signaling responses at the cellular and organismic levels. This review focuses first on the regulation of PI3Kß activity in vitro and in cells, and then summarizes the biology of PI3Kß signaling in distinct tissues and in human disease.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Animals , Class Ia Phosphatidylinositol 3-Kinase/chemistry , Class Ia Phosphatidylinositol 3-Kinase/genetics , Enzyme Activation , GTP Phosphohydrolases/metabolism , Humans , Molecular Structure , Mutation , Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
11.
Biophys Rev ; 10(6): 1617-1629, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30382555

ABSTRACT

The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.

12.
Nature ; 562(7725): E3, 2018 10.
Article in English | MEDLINE | ID: mdl-29980769

ABSTRACT

Change history: In the HTML version of this Letter, Extended Data Fig. 4 incorrectly corresponded to Fig. 4 (the PDF version of the figure was correct). This has been corrected online.

13.
Exp Cell Res ; 370(2): 273-282, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29953877

ABSTRACT

Nonmuscle myosin-IIA (NMHC-IIA) heavy chain phosphorylation has gained recognition as an important feature of myosin-II regulation. In previous work, we showed that phosphorylation on S1943 promotes myosin-IIA filament disassembly in vitro and enhances EGF-stimulated lamellipod extension of breast tumor cells. However, the contribution of NMHC-IIA S1943 phosphorylation to the modulation of invasive cellular behavior and metastasis has not been examined. Stable expression of phosphomimetic (S1943E) or non-phosphorylatable (S1943A) NMHC-IIA in breast cancer cells revealed that S1943 phosphorylation enhances invadopodia function, and is critical for matrix degradation in vitro and experimental metastasis in vivo. These studies demonstrate a novel link between NMHC-IIA S1943 phosphorylation, the regulation of extracellular matrix degradation and tumor cell invasion and metastasis.


Subject(s)
Cytoskeletal Proteins/metabolism , Neoplasm Metastasis/pathology , Nonmuscle Myosin Type IIA/metabolism , Podosomes/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Myosin Heavy Chains/metabolism , Phosphorylation , Podosomes/genetics
14.
Nature ; 558(7711): 610-614, 2018 06.
Article in English | MEDLINE | ID: mdl-29925952

ABSTRACT

Viral infections continue to represent major challenges to public health, and an enhanced mechanistic understanding of the processes that contribute to viral life cycles is necessary for the development of new therapeutic strategies 1 . Viperin, a member of the radical S-adenosyl-L-methionine (SAM) superfamily of enzymes, is an interferon-inducible protein implicated in the inhibition of replication of a broad range of RNA and DNA viruses, including dengue virus, West Nile virus, hepatitis C virus, influenza A virus, rabies virus 2 and HIV3,4. Viperin has been suggested to elicit these broad antiviral activities through interactions with a large number of functionally unrelated host and viral proteins3,4. Here we demonstrate that viperin catalyses the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously undescribed biologically relevant molecule, via a SAM-dependent radical mechanism. We show that mammalian cells expressing viperin and macrophages stimulated with IFNα produce substantial quantities of ddhCTP. We also establish that ddhCTP acts as a chain terminator for the RNA-dependent RNA polymerases from multiple members of the Flavivirus genus, and show that ddhCTP directly inhibits replication of Zika virus in vivo. These findings suggest a partially unifying mechanism for the broad antiviral effects of viperin that is based on the intrinsic enzymatic properties of the protein and involves the generation of a naturally occurring replication-chain terminator encoded by mammalian genomes.


Subject(s)
Antiviral Agents/metabolism , Cytidine Triphosphate/metabolism , Genome, Human/genetics , Proteins/genetics , Proteins/metabolism , Transcription Termination, Genetic , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Cytidine Triphosphate/biosynthesis , Cytidine Triphosphate/chemistry , HEK293 Cells , Humans , Oxidoreductases Acting on CH-CH Group Donors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , Ribonucleotides , Substrate Specificity , Vero Cells , Zika Virus/enzymology , Zika Virus/metabolism
15.
Mol Biol Cell ; 29(5): 632-642, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29282275

ABSTRACT

S100A4, a member of the S100 family of Ca2+-binding proteins, is a key regulator of cell migration and invasion. Our previous studies showed that bone marrow-derived macrophages from S100A4-/- mice exhibit defects in directional motility and chemotaxis in vitro and reduced recruitment to sites of inflammation in vivo. We now show that the loss of S100A4 produces two mechanistically distinct phenotypes with regard to macrophage invasion: a defect in matrix degradation, due to a disruption of podosome rosettes caused by myosin-IIA overassembly, and a myosin-independent increase in microtubule acetylation, which increases podosome rosette stability and is sufficient to inhibit macrophage invasion. Our studies point to S100A4 as a critical regulator of matrix degradation, whose actions converge on the dynamics and degradative functions of podosome rosettes.


Subject(s)
Cell Movement , Macrophages/metabolism , Nonmuscle Myosin Type IIA/metabolism , S100 Calcium-Binding Protein A4/metabolism , Animals , Chemotaxis , Mice , Models, Molecular , Protein Multimerization , S100 Calcium-Binding Protein A4/genetics
16.
Biochem J ; 474(23): 3903-3914, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29046393

ABSTRACT

Phosphoinositide 3-kinases (PI 3-kinases) are regulated by a diverse range of upstream activators, including receptor tyrosine kinases (RTKs), G-protein-coupled receptors (GPCRs), and small GTPases from the Ras, Rho and Rab families. For the Class IA PI 3-kinase PI3Kß, two mechanisms for GPCR-mediated regulation have been described: direct binding of Gßγ subunits to the C2-helical domain linker of p110ß, and Dock180/Elmo1-mediated activation of Rac1, which binds to the Ras-Binding Domain of p110ß. We now show that the integration of these dual pathways is unexpectedly complex. In breast cancer cells, expression of constitutively activated Rac1 (CA-Rac1) along with either GPCR stimulation or expression of Gßγ led to an additive PI3Kß-dependent activation of Akt. Whereas CA-Rac1-mediated activation of Akt was blocked in cells expressing a mutated PI3Kß that cannot bind Gßγ, Gßγ and GPCR-mediated activation of Akt was preserved when Rac1 binding to PI3Kß was blocked. Surprisingly, PI3Kß-dependent CA-Rac1 signaling to Akt was still seen in cells expressing a mutant p110ß that cannot bind Rac1. Instead of directly binding to PI3Kß, CA-Rac1 acts by enhancing Gßγ coupling to PI3Kß, as CA-Rac1-mediated Akt activation was blocked by inhibitors of Gßγ. Cells expressing CA-Rac1 exhibited a robust induction of macropinocytosis, and inhibitors of macropinocytosis blocked the activation of Akt by CA-Rac1 or lysophosphatidic acid. Our data suggest that Rac1 can potentiate the activation of PI3Kß by GPCRs through an indirect mechanism, by driving the formation of macropinosomes that serve as signaling platforms for Gßγ coupling to PI3Kß.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Pinocytosis/physiology , Signal Transduction/physiology , rac1 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase/genetics , Enzyme Activation/genetics , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/genetics , HEK293 Cells , Humans , Lysophospholipids/genetics , Lysophospholipids/metabolism , Protein Binding , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/genetics
17.
Front Immunol ; 8: 1119, 2017.
Article in English | MEDLINE | ID: mdl-28951732

ABSTRACT

The calcium-binding protein S100A4 has been described to promote pathological inflammation in experimental autoimmune and inflammatory disorders and in allergy and to contribute to antigen presentation and antibody response after parenteral immunization with an alum-adjuvanted antigen. In this study, we extend these findings by demonstrating that mice lacking S100A4 have a defective humoral and cellular immune response to mucosal (sublingual) immunization with a model protein antigen [ovalbumin (OVA)] given together with the strong mucosal adjuvant cholera toxin (CT), and that this impairment is due to defective adjuvant-stimulated antigen presentation by antigen-presenting cells. In comparison to wild-type (WT) mice, mice genetically lacking S100A4 had reduced humoral and cellular immune responses after immunization with OVA plus CT, including a complete lack of detectable germinal center reaction. Further, when stimulated in vitro with OVA plus CT, S100A4-/- dendritic cells (DCs) showed impaired responses in several CT-stimulated immune regulatory molecules including the co-stimulatory molecule CD86, inflammasome-associated caspase-1 and IL-1ß. Coculture of OVA-specific OT-II T cells with S100A4-/- DCs that had been pulse incubated with OVA plus CT resulted in impaired OT-II T cell proliferation and reduced production of Th1, Th2, and Th17 cytokines compared to similar cocultures with WT DCs. In accordance with these findings, transfection of WT DCs with S100A4-targeting small interfering RNA (siRNA) but not mock-siRNA resulted in significant reductions in the expression of caspase-1 and IL-1ß as well as CD86 in response to CT. Importantly, also engraftment of WT DCs into S100A4-/- mice effectively restored the immune response to immunization in the recipients. In conclusion, our results demonstrate that deficiency in S100A4 has a strong impact on the development of both humoral and cellular immunity after mucosal immunization using CT as adjuvant.

18.
Cancer Res ; 76(10): 2944-53, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27013201

ABSTRACT

Inappropriate activation of PI3K signaling has been implicated strongly in human cancer. Although studies on the role of PI3K signaling in breast tumorigenesis and progression have focused most intensively on PI3Kα, a role for PI3Kß has begun to emerge. The PI3Kß isoform is unique among class IA PI3K enzymes in that it is activated by both receptor tyrosine kinases and G-protein-coupled receptors (GPCR). In previous work, we identified a mutation that specifically abolishes PI3Kß binding to Gßγ (p110(526KK-DD)). Expression of this mutant in p110ß-silenced breast cancer cells inhibits multiple steps of the metastatic cascade in vitro and in vivo and causes a cell autonomous defect in invadopodial matrix degradation. Our results identify a novel link between GPCRs and PI3Kß in mediating metastasis, suggesting that disruption of this link might offer a novel therapeutic target to prevent the development of metastatic disease. Cancer Res; 76(10); 2944-53. ©2016 AACR.


Subject(s)
Breast Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Lung Neoplasms/secondary , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Apoptosis , Blotting, Western , Breast Neoplasms/metabolism , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
J Biol Chem ; 290(51): 30390-405, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26475863

ABSTRACT

Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated by growth factor and G-protein-coupled receptors and propagate intracellular signals for growth, survival, proliferation, and metabolism. p85α, a modular protein consisting of five domains, binds and inhibits the enzymatic activity of class IA PI3K catalytic subunits. Here, we describe the structural states of the p85α dimer, based on data from in vivo and in vitro solution characterization. Our in vitro assembly and structural analyses have been enabled by the creation of cysteine-free p85α that is functionally equivalent to native p85α. Analytical ultracentrifugation studies showed that p85α undergoes rapidly reversible monomer-dimer assembly that is highly exothermic in nature. In addition to the documented SH3-PR1 dimerization interaction, we identified a second intermolecular interaction mediated by cSH2 domains at the C-terminal end of the polypeptide. We have demonstrated in vivo concentration-dependent dimerization of p85α using fluorescence fluctuation spectroscopy. Finally, we have defined solution conditions under which the protein is predominantly monomeric or dimeric, providing the basis for small angle x-ray scattering and chemical cross-linking structural analysis of the discrete dimer. These experimental data have been used for the integrative structure determination of the p85α dimer. Our study provides new insight into the structure and assembly of the p85α homodimer and suggests that this protein is a highly dynamic molecule whose conformational flexibility allows it to transiently associate with multiple binding proteins.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/chemistry , Protein Multimerization , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Humans , Protein Structure, Quaternary , Protein Structure, Tertiary
20.
J Exp Med ; 212(9): 1433-48, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26261265

ABSTRACT

Although the link between inflammation and cancer initiation is well established, its role in metastatic diseases, the primary cause of cancer deaths, has been poorly explored. Our previous studies identified a population of metastasis-associated macrophages (MAMs) recruited to the lung that promote tumor cell seeding and growth. Here we show that FMS-like tyrosine kinase 1 (Flt1, also known as VEGFR1) labels a subset of macrophages in human breast cancers that are significantly enriched in metastatic sites. In mouse models of breast cancer pulmonary metastasis, MAMs uniquely express FLT1. Using several genetic models, we show that macrophage FLT1 signaling is critical for metastasis. FLT1 inhibition does not affect MAM recruitment to metastatic lesions but regulates a set of inflammatory response genes, including colony-stimulating factor 1 (CSF1), a central regulator of macrophage biology. Using a gain-of-function approach, we show that CSF1-mediated autocrine signaling in MAMs is downstream of FLT1 and can restore the tumor-promoting activity of FLT1-inhibited MAMs. Thus, CSF1 is epistatic to FLT1, establishing a link between FLT1 and inflammatory responses within breast tumor metastases. Importantly, FLT1 inhibition reduces tumor metastatic efficiency even after initial seeding, suggesting that these pathways represent therapeutic targets in metastatic disease.


Subject(s)
Breast Neoplasms/metabolism , Macrophages/metabolism , Mammary Neoplasms, Animal/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , Autocrine Communication/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/pathology , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice , Mice, Transgenic , Neoplasm Metastasis , Neoplasm Proteins/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...