Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37579162

ABSTRACT

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

2.
Proc Natl Acad Sci U S A ; 119(37): e2201213119, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36067322

ABSTRACT

Atmospheric electrical discharges are now known to generate unexpectedly large amounts of the atmosphere's primary oxidant, hydroxyl (OH), in thunderstorm anvils, where electrical discharges are caused by atmospheric charge separation. The question is "Do other electrical discharges also generate large amounts of oxidants?" In this paper, we demonstrate that corona formed on grounded metal objects under thunderstorms produce extreme amounts of OH, hydroperoxyl (HO2), and ozone (O3). Hundreds of parts per trillion to parts per billion of OH and HO2 were measured during seven thunderstorms that passed over the rooftop site during an air quality study in Houston, TX in summer 2006. A combination of analysis of these field results and laboratory experiments shows that these extreme oxidant amounts were generated by corona on the inlet of the OH-measuring instrument and that corona are easier to generate on lightning rods than on the inlet. In the laboratory, increasing the electric field increased OH, HO2, and O3, with 14 times more O3 generated than OH and HO2, which were equal. Calculations show that corona on lightning rods can annually generate OH that is 10-100 times ambient amounts within centimeters of the lightning rod and on high-voltage electrical power lines can generate OH that is 500 times ambient a meter away from the corona. Contrary to current thinking, previously unrecognized corona-generated OH, not corona-generated UV radiation, mostly likely initiates premature degradation of high-voltage polymer insulators.

3.
J Med Microbiol ; 70(3)2021 Mar.
Article in English | MEDLINE | ID: mdl-33629949

ABSTRACT

This study tests the release of SARS-CoV-2 RNA into the air during normal breathing, without any sign of possible risk of contagion such as coughing, sneezing or talking. Five patients underwent oropharyngeal, nasopharyngeal and salivary swabs for real-time reverse transcriptase PCR (RT-PCR) detection of SARS-CoV-2 RNA. Direct SARS-CoV-2 release during normal breathing was also investigated by RT-PCR in air samples collected using a microbiological sampler. Viral RNA was detected in air at 1 cm from the mouth of patients whose oropharyngeal, nasopharyngeal and salivary swabs tested positive for SARS-CoV-2 RNA. In contrast, the viral RNA was not identified in the exhaled air from patients with oropharyngeal, nasopharyngeal and salivary swabs that tested negative. Contagion of SARS-CoV-2 is possible by being very close to the mouth of someone who is infected, asymptomatic and simply breathing.


Subject(s)
Air Microbiology , COVID-19/virology , SARS-CoV-2/isolation & purification , Aerosols/analysis , Aged , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Cross Infection/diagnosis , Cross Infection/virology , Hospitals , Humans , Italy/epidemiology , Nasopharynx/virology , Oropharynx/virology , Patient Isolators , SARS-CoV-2/genetics , Saliva/virology
4.
Faraday Discuss ; 226: 537-550, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33346290

ABSTRACT

We present trace gas vertical profiles observed by instruments on the NASA DC-8 and at a ground site during the Korea-US air quality study (KORUS) field campaign in May to June 2016. We focus on the region near the Seoul metropolitan area and its surroundings where both anthropogenic and natural emission sources play an important role in local photochemistry. Integrating ground and airborne observations is the major research goal of many atmospheric chemistry field campaigns. Although airborne platforms typically aim to sample from near surface to the free troposphere, it is difficult to fly very close to the surface especially in environments with complex terrain or a populated area. A detailed analysis integrating ground and airborne observations associated with specific concentration footprints indicates that reactive trace gases are quickly oxidized below an altitude of 700 m. The total OH reactivity profile has a rapid decay in the lower part of troposphere from surface to the lowest altitude (700 m) sampled by the NASA DC-8. The decay rate is close to that of very reactive biogenic volatile organic compounds such as monoterpenes. Therefore, we argue that photochemical processes in the bottom of the boundary layer, below the typical altitude of aircraft sampling, should be thoroughly investigated to properly assess ozone and secondary aerosol formation.


Subject(s)
Air Pollutants , Ozone , Aerosols/analysis , Air Pollutants/analysis , Forests , Ozone/analysis , Seoul
5.
Environ Pollut ; 263(Pt A): 114380, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32222622

ABSTRACT

Significant progress has been made in reducing emissions of air pollutants in the San Joaquin Valley in California. Nevertheless, from May to October, the valley still experiences numerous exceedances of the ozone health standard. As the standards are tightened, it is becoming harder to design policies to attain them. To better understand historical emissions reductions in the context of necessary future control efforts, we analyze 25 years of hourly measurements of ozone and nitrogen oxides concentrations for the hottest one third of days in Fresno using multiple linear regression analysis. We then analyze the changing dynamics of the weekend effect over the years in order to evaluate the growing importance of day-to-day carryover on ozone concentrations. A simplified model of the day-of-week pattern of ozone concentrations is used to explore the impact of same-day and previous-day concentrations. In addition to ozone, Ox (O3 + NO2) is used to distinguish reductions of atmospheric oxidants from short-duration exchanges between O3 and NO2. The analysis shows that there has been a significant increase in the importance of day-to-day carryover on ozone levels, and that consequently the ozone weekend effect in Fresno has changed over the last 25 years. In the 1990s, lower NOx on the weekend led to increased ozone on Saturdays and Sundays but levels of Ox remained constant. In the 2010s, lower weekend NOx led to reduced ozone on Saturdays, Sundays and Mondays showing that reductions in primary pollutants are sufficient to yield immediate decreases in secondary pollutants. Overall, the photochemical regime in the atmosphere has evolved such that carryover and regional pollution will be increasingly important in determining local ozone concentrations. Policies will therefore need to pay greater attention to regional emissions as local reductions may not be sufficient to meet the health standard.


Subject(s)
Air Pollutants/analysis , Air Pollution , Ozone/analysis , Atmosphere , California , Environmental Monitoring , Nitrogen Oxides/analysis , Periodicity
6.
Proc Natl Acad Sci U S A ; 117(9): 4505-4510, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071211

ABSTRACT

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

7.
Atmos Chem Phys ; 20(13): 7753-7781, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33688335

ABSTRACT

The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NO y concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NO y . The severe model overestimate of NO y during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NO y partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3% to 9% and improves model-measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr-1 of a long-lived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land.

8.
Sci Total Environ ; 685: 508-513, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176971

ABSTRACT

Changes in regional climate are causing disruptions in global agriculture, including wineries that produce premium wines. Temperature is the key factor influencing the growth stages of wine grapes worldwide and its recent increase is causing early harvests, affecting the quality and quantity of premium wine. Water availability is the other important element: during the growing season the crop yield benefits of constant moderate rains, whereas this positive effect would be reversed if the same precipitation amounts fell in short periods of time. Climate change may alter the characteristics of precipitation such as intensity, duration and frequency of rain even if it does not alter the total amount of precipitation. Although the impact of precipitation amount and drought on wine grape phenology have been investigated, knowledge of the role of precipitation characteristics is very limited. Here we show that the precipitation intensity, which is the precipitation amount divided by the number of the rainy days (NRD), has also caused early grape harvest dates for one grape varietal. Using the harvest dates (1820-2012) of a premium wine made by a winery that has kept the cultivation methods and practices unchanged since 1650, we found that for growing seasons since 1960, annual harvest dates have been getting early as temperature increases (-5.92 days °C-1) and more intense precipitation events occur (-1.51 days/(mm/NRD)). Our results are consistent with the hypothesis that the increasing tendency of precipitation intensity could exacerbate the effect of global warming on some premium wines that have been produced for >400 years.


Subject(s)
Climate Change , Rain , Wine , Italy
9.
Environ Sci Technol ; 53(7): 3645-3652, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30840441

ABSTRACT

Secondary organic aerosol (SOA) particles, which are formed and aged in Earth's oxidizing atmosphere, influence climate and human health. Quantifying properties of SOA particles and oxidized organic compounds (OVOCs) requires controlled experiments in enclosures, but enclosures have walls that can alter the chemistry. Comparing wall effects for widely used large environmental chambers (ECs) and portable oxidative flow reactors (OFRs) is difficult. In this work, the Chamber Wall Index (CWI) is developed as the minimum ratio of the initial wall uptake time constant divided by the enclosure residence time. This index demonstrates that walls alter the chemistry less in OFRs than in ECs, due primarily to shorter residence times. Much shorter residence times may not be feasible because oxidation chemistry and microphysics need time to produce atmospherically relevant SOA and OVOCs. While all current OFRs have wall effects, it may be possible to develop a "wall-less" OFR.


Subject(s)
Atmosphere , Organic Chemicals , Aerosols , Climate , Humans , Oxidation-Reduction
10.
Atmos Chem Phys ; 19(3): 1649-1664, 2019.
Article in English | MEDLINE | ID: mdl-31889955

ABSTRACT

Cyclic volatile methyl siloxanes (cVMS) are high-production chemicals present in many personal care products. They are volatile, hydrophobic, and relatively long-lived due to slow oxidation kinetics. Evidence from chamber and ambient studies indicates that oxidation products may be found in the condensed aerosol phase. In this work, we use an oxidation flow reactor to produce ~ 100 µgm-3 of organosilicon aerosol from OH oxidation of decamethyl-cyclopentasiloxane (D5) with aerosol mass fractions (i.e., yields) of 0.2-0.5. The aerosols were assessed for concentration, size distribution, morphology, sensitivity to seed aerosol, hygroscopicity, volatility and chemical composition through a combination of aerosol size distribution measurement, tandem differential mobility analysis, and electron microscopy. Similar aerosols were produced when vapor from solid antiperspirant was used as the reaction precursor. Aerosol yield was sensitive to chamber OH and to seed aerosol, suggesting sensitivity of lower-volatility species and recovered yields to oxidation conditions and chamber operation. The D5 oxidation aerosol products were relatively non-hygroscopic, with an average hygroscopicity kappa of ~ 0.01, and nearly non-volatile up to 190 °C temperature. Parameters for exploratory treatment as a semi-volatile organic aerosol in atmospheric models are provided.

11.
Environ Sci Technol ; 52(23): 13738-13746, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30407797

ABSTRACT

The concentration of nitrogen oxides (NO x) plays a central role in controlling air quality. On a global scale, the primary sink of NO x is oxidation to form HNO3. Gas-phase HNO3 photolyses slowly with a lifetime in the troposphere of 10 days or more. However, several recent studies examining HONO chemistry have proposed that particle-phase HNO3 undergoes photolysis 10-300 times more rapidly than gas-phase HNO3. We present here constraints on the rate of particle-phase HNO3 photolysis based on observations of NO x and HNO3 collected over the Yellow Sea during the KORUS-AQ study in summer 2016. The fastest proposed photolysis rates are inconsistent with the observed NO x to HNO3 ratios. Negligible to moderate enhancements of the HNO3 photolysis rate in particles, 1-30 times faster than in the gas phase, are most consistent with the observations. Small or moderate enhancement of particle-phase HNO3 photolysis would not significantly affect the HNO3 budget but could help explain observations of HONO and NO x in highly aged air.


Subject(s)
Nitrogen Oxides , Nitrous Acid , Aerosols , Nitrates , Photolysis
12.
Environ Sci Technol ; 52(20): 11642-11651, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30234977

ABSTRACT

Reactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear. Here, we quantify and compare the ROS yields and oxidative potential of isoprene, ß-pinene, and naphthalene SOA in water and surrogate lung fluid (SLF). In pure water, isoprene and ß-pinene SOA were found to produce mainly OH and organic radicals, whereas naphthalene SOA produced mainly H2O2 and O2•-. The total molar yields of ROS of isoprene and ß-pinene SOA were 11.8% and 8.2% in water and decreased to 8.5% and 5.2% in SLF, which can be attributed to ROS removal by lung antioxidants. A positive correlation between the total peroxide concentration and ROS yield suggests that organic (hydro)peroxides may play an important role in ROS formation from biogenic SOA. The total molar ROS yields of naphthalene SOA was 1.7% in water and increased to 11.3% in SLF. This strong increase is likely due to redox reaction cycles involving environmentally persistent free radicals (EPFR) or semiquinones, antioxidants, and oxygen, which may promote the formation of H2O2 and the adverse health effects of anthropogenic SOA from aromatic precursors.


Subject(s)
Air Pollutants , Water , Aerosols , Hydrogen Peroxide , Reactive Oxygen Species
13.
Atmos Chem Phys ; 18(4): 2615-2651, 2018.
Article in English | MEDLINE | ID: mdl-29963079

ABSTRACT

Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.

14.
Environ Sci Technol ; 51(18): 10872-10880, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28825297

ABSTRACT

Organic acids have primary and secondary sources in the atmosphere, impact ecosystem health, and are useful metrics for identifying gaps in organic oxidation chemistry through model-measurement comparisons. We photooxidized (OH oxidation) primary emissions from diesel and biodiesel fuel types under two engine loads in an oxidative flow reactor. formic, butyric, and propanoic acids, but not methacrylic acid, have primary and secondary sources. Emission factors for these gas-phase acids varied from 0.3-8.4 mg kg-1 fuel. Secondary chemistry enhanced these emissions by 1.1 (load) to 4.4 (idle) × after two OH-equivalent days. The relative enhancement in secondary organic acids in idle versus loaded conditions was due to increased precursor emissions, not faster reaction rates. Increased hydrocarbon emissions in idle conditions due to less complete combustion (associated with less oxidized gas-phase molecules) correlated to higher primary organic acid emissions. The lack of correlation between organic aerosol and organic acid concentrations downstream of the flow reactor indicates that the secondary products formed on different oxidation time scales and that despite being photochemical products, organic acids are poor tracers for secondary organic aerosol formation from diesel exhaust. Ignoring secondary chemistry from diesel exhaust would lead to underestimates of both organic aerosol and gas-phase organic acids.


Subject(s)
Organic Chemicals/analysis , Vehicle Emissions/analysis , Aerosols , Atmosphere , Biofuels
15.
Faraday Discuss ; 200: 251-270, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28574563

ABSTRACT

Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H2O2 with Fe2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.


Subject(s)
Air Pollutants/metabolism , Atmosphere/chemistry , Minerals/metabolism , Public Health , Reactive Oxygen Species/metabolism , Aerosols/chemistry , Aerosols/metabolism , Air Pollutants/chemistry , Minerals/chemistry , Particulate Matter/chemistry , Particulate Matter/metabolism , Water/chemistry , Water/metabolism
18.
Phys Chem Chem Phys ; 18(15): 10241-54, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27021601

ABSTRACT

We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C1 stabilized Criegee (CH2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH2OO + H2O (k(H2O)∼ 1 × 10(-15) cm(3) molec(-1) s(-1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H2O2, and 21% formic acid + H2O; and CH2OO + (H2O)2 (k(H2O)2∼ 1 × 10(-12) cm(3) molec(-1) s(-1)) yields 40% HMHP, 6% formaldehyde + H2O2, and 54% formic acid + H2O. Competitive rate determinations (kSO2/k(H2O)n=1,2∼ 2.2 (±0.3) × 10(4)) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO2] ∼ 10 ppb). The importance of the CH2OO + (H2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH2OO does not substantially affect the lifetime of SO2 or HCOOH in the Southeast US, e.g., CH2OO + SO2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant.

19.
J Phys Chem A ; 120(9): 1317-9, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26960593
20.
Environ Sci Technol ; 50(3): 1269-79, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26735899

ABSTRACT

In order to probe how anthropogenic pollutants can impact the atmospheric oxidation of biogenic emissions, we investigated how sulfur dioxide (SO2) perturbations impact the oxidation of two monoterpenes, α-and ß-pinene. We used chemical ionization mass spectrometry to examine changes in both individual molecules and gas-phase bulk properties of oxidation products as a function of SO2 addition. SO2 perturbations impacted the oxidation systems of α-and ß-pinene, leading to an ensemble of products with a lesser degree of oxygenation than unperturbed systems. These changes may be due to shifts in the OH:HO2 ratio from SO2 oxidation and/or to SO3 reacting directly with organic molecules. Van Krevelen diagrams suggest a shift from gas-phase functionalization by alcohol/peroxide groups to functionalization by carboxylic acid or carbonyl groups, consistent with a decreased OH:HO2 ratio. Increasing relative humidity dampens the impact of the perturbation. This decrease in oxygenation may impact secondary organic aerosol formation in regions dominated by biogenic emissions with nearby SO2 sources. We observed sulfur-containing organic compounds following SO2 perturbations of monoterpene oxidation; whether these are the result of photochemistry or an instrumental artifact from ion-molecule clustering remains uncertain. However, our results demonstrate that the two monoterpene isomers produce unique suites of oxidation products.


Subject(s)
Air Pollutants/chemistry , Bridged Bicyclo Compounds/chemistry , Monoterpenes/chemistry , Sulfur Dioxide/chemistry , Aerosols , Bicyclic Monoterpenes , Carboxylic Acids/chemistry , Mass Spectrometry , Oxidation-Reduction , Peroxides/chemistry , Photochemistry , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...