Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
2.
Front Med (Lausanne) ; 10: 1294559, 2023.
Article in English | MEDLINE | ID: mdl-38196833

ABSTRACT

Introduction: The development of costs-effective and sensitive screening solutions to prevent amblyopia and identify its risk factors (strabismus, refractive problems or mixed) is a significant priority of pediatric ophthalmology. The main objective of our study was to compare the classification performance of various vision screening tests, including classic, stereoacuity-based tests (Lang II, TNO, Stereo Fly, and Frisby), and non-stereoacuity-based, low-density static, dynamic, and noisy anaglyphic random dot stereograms. We determined whether the combination of non-stereoacuity-based tests integrated in the simplest artificial intelligence (AI) model could be an alternative method for vision screening. Methods: Our study, conducted in Spain and Hungary, is a non-experimental, cross-sectional diagnostic test assessment focused on pediatric eye conditions. Using convenience sampling, we enrolled 423 children aged 3.6-14 years, diagnosed with amblyopia, strabismus, or refractive errors, and compared them to age-matched emmetropic controls. Comprehensive pediatric ophthalmologic examinations ascertained diagnoses. Participants used filter glasses for stereovision tests and red-green goggles for an AI-based test over their prescribed glasses. Sensitivity, specificity, and the area under the ROC curve (AUC) were our metrics, with sensitivity being the primary endpoint. AUCs were analyzed using DeLong's method, and binary classifications (pathologic vs. normal) were evaluated using McNemar's matched pair and Fisher's nonparametric tests. Results: Four non-overlapping groups were studied: (1) amblyopia (n = 46), (2) amblyogenic (n = 55), (3) non-amblyogenic (n = 128), and (4) emmetropic (n = 194), and a fifth group that was a combination of the amblyopia and amblyogenic groups. Based on AUCs, the AI combination of non-stereoacuity-based tests showed significantly better performance 0.908, 95% CI: (0.829-0.958) for detecting amblyopia and its risk factors than most classical tests: Lang II: 0.704, (0.648-0.755), Stereo Fly: 0.780, (0.714-0.837), Frisby: 0.754 (0.688-0.812), p < 0.02, n = 91, DeLong's method). At the optimum ROC point, McNemar's test indicated significantly higher sensitivity in accord with AUCs. Moreover, the AI solution had significantly higher sensitivity than TNO (p = 0.046, N = 134, Fisher's test), as well, while the specificity did not differ. Discussion: The combination of multiple tests utilizing anaglyphic random dot stereograms with varying parameters (density, noise, dynamism) in AI leads to the most advanced and sensitive screening test for identifying amblyopia and amblyogenic conditions compared to all the other tests studied.

3.
Graefes Arch Clin Exp Ophthalmol ; 257(2): 413-423, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30284041

ABSTRACT

PURPOSE: Stereo vision tests are widely used in the clinical practice for screening amblyopia and amblyogenic conditions. According to literature, none of these tests seems to be suitable to be used alone as a simple and reliable tool. There has been a growing interest in developing new types of stereo vision tests, with sufficient sensitivity to detect amblyopia. This new generation of assessment tools should be computer based, and their reliability must be statistically warranted. The present study reports the clinical evaluation of a screening system based on random dot stereograms using a tablet as display. Specifically, a dynamic random dot stereotest with binocularly detectable Snellen-E optotype (DRDSE) was used and compared with the Lang II stereotest. METHODS: A total of 141 children (aged 4-14, mean age 8.9) were examined in a field study at the Department of Ophthalmology, Pécs, Hungary. Inclusion criteria consisted of diagnoses of amblyopia, anisometropia, convergent strabismus, and hyperopia. Children with no ophthalmic pathologies were also enrolled as controls. All subjects went through a regular pediatric ophthalmological examination before proceeding to the DRDSE and Lang II tests. RESULTS: DRDSE and Lang II tests were compared in terms of sensitivity and specificity for different conditions. DRDSE had a 100% sensitivity both for amblyopia (n = 11) and convergent strabismus (n = 21), as well as a 75% sensitivity for hyperopia (n = 36). However, the performance of DRDSE was not statistically significant when screening for anisometropia. On the other hand, Lang II proved to have 81.8% sensitivity for amblyopia, 80.9% for strabismus, and only 52.8% for hyperopia. The specificity of DRDSE was 61.2% for amblyopia, 67.3% for strabismus, and 68.6% for hyperopia, respectively. Conversely, Lang II showed about 10% better specificity, 73.8% for amblyopia, 79.2% for strabismus, and 77.9% for hyperopia. CONCLUSIONS: The DRDSE test has a better sensitivity for the detection of conditions such as amblyopia or convergent strabismus compared with Lang II, although with slightly lower specificity. If the specificity could be further improved by optimization of the stimulus parameters, while keeping the sensitivity high, DRDSE would be a promising stereo vision test for screening of amblyopia.


Subject(s)
Vision Disorders/diagnosis , Vision Screening/methods , Vision, Binocular/physiology , Visual Acuity/physiology , Adolescent , Child , Child, Preschool , Female , Humans , Male , Reproducibility of Results , Vision Disorders/physiopathology
4.
Invest Ophthalmol Vis Sci ; 55(4): 2574-83, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24644050

ABSTRACT

PURPOSE: P1 is the major positive component of pattern-reversal visual evoked potentials (PR-VEPs). The rapid decrease of its latency correlates with the progressive myelination in the developing infant brain, which affects signal transmission in the visual system. An age-dependent phase shift, analogous to P1 peak latency, can be observed in dynamic random dot correlogram (DRDC)-evoked VEPs (DRDC-VEPs), a method used to assess binocular function. Our goal was to study the relationship between cyclopean DRDC-VEP phases and PR-VEP P1 latencies in full-term and preterm infants so as to further explore the experience dependence of early binocular developmental processes. METHODS: DRDC-VEPs and PR-VEPs were recorded in 128 full-term and 47 preterm healthy infants and toddlers. DRDC stimuli were presented on the red and green channels of a CRT monitor while infants wore red-green goggles for dichoptic viewing. Reliability of VEP responses was assessed by the statistic. Logistic function was fit to the phase and latency data as a function of age, and goodness of fit was assessed by analysis of residuals. RESULTS: The phase shift of DRDC-VEPs and the rapid decrease of P1 latencies occur at identical postconceptual ages. A correlation also was found between P1 latencies and DRDC-VEP phases. CONCLUSIONS: Although development of binocularity is an extremely experience-dependent process, our data suggest that DRDC-VEP phase and P1 latency mature independently from visual experience. We propose that both the phase shift and decreasing P1 latency are indicators of myelination and increasingly faster signal transmission in the developing visual system.


Subject(s)
Evoked Potentials, Visual/physiology , Infant, Premature/physiology , Pattern Recognition, Visual , Vision, Binocular/physiology , Visual Pathways/growth & development , Female , Humans , Infant , Infant, Newborn , Male , Photic Stimulation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...