Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Mol Pharmacol ; 88(6): 1011-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26438213

ABSTRACT

Activation of the inositol-requiring enzyme-1 alpha (IRE1α) protein caused by endoplasmic reticulum stress results in the homodimerization of the N-terminal endoplasmic reticulum luminal domains, autophosphorylation of the cytoplasmic kinase domains, and conformational changes to the cytoplasmic endoribonuclease (RNase) domains, which render them functional and can lead to the splicing of X-box binding protein 1 (XBP 1) mRNA. Herein, we report the first crystal structures of the cytoplasmic portion of a human phosphorylated IRE1α dimer in complex with (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide, a novel, IRE1α-selective kinase inhibitor, and staurosporine, a broad spectrum kinase inhibitor. (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide inhibits both the kinase and RNase activities of IRE1α. The inhibitor interacts with the catalytic residues Lys599 and Glu612 and displaces the kinase activation loop to the DFG-out conformation. Inactivation of IRE1α RNase activity appears to be caused by a conformational change, whereby the αC helix is displaced, resulting in the rearrangement of the kinase domain-dimer interface and a rotation of the RNase domains away from each other. In contrast, staurosporine binds at the ATP-binding site of IRE1α, resulting in a dimer consistent with RNase active yeast Ire1 dimers. Activation of IRE1α RNase activity appears to be promoted by a network of hydrogen bond interactions between highly conserved residues across the RNase dimer interface that place key catalytic residues poised for reaction. These data implicate that the intermolecular interactions between conserved residues in the RNase domain are required for activity, and that the disruption of these interactions can be achieved pharmacologically by small molecule kinase domain inhibitors.


Subject(s)
Endoribonucleases/antagonists & inhibitors , Endoribonucleases/metabolism , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Crystallization , Endoribonucleases/chemistry , Enzyme Activation/drug effects , Enzyme Activation/physiology , Humans , Protein Conformation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary
2.
Oncotarget ; 5(13): 5076-86, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24970803

ABSTRACT

The aim of this study was to assess niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase (PARP) inhibitor, for its ability to radiosensitize human tumor cells. Human tumor cells derived from lung, breast and prostate cancers were tested for radiosensitization by niraparib using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of niraparib to alter the repair of radiation-induced DNA double strand breaks (DSBs) was determined using detection of γ-H2AX foci and RAD51 foci. Clonogenic survival analyses indicated that micromolar concentrations of niraparib radiosensitized tumor cell lines derived from lung, breast, and prostate cancers independently of their p53 status but not cell lines derived from normal tissues. Niraparib also sensitized tumor cells to H2O2 and converted H2O2-induced single strand breaks (SSBs) into DSBs during DNA replication. These results indicate that human tumor cells are significantly radiosensitized by the potent and selective PARP-1 inhibitor, niraparib, in the in vitro setting. The mechanism of this effect appears to involve a conversion of sublethal SSBs into lethal DSBs during DNA replication due to the inhibition of base excision repair by the drug. Taken together, our findings strongly support the clinical evaluation of niraparib in combination with radiation.


Subject(s)
Indazoles/pharmacology , Piperidines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Radiation-Sensitizing Agents/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Double-Stranded/radiation effects , DNA Breaks, Single-Stranded/drug effects , DNA Breaks, Single-Stranded/radiation effects , DNA Repair/drug effects , DNA Repair/radiation effects , Female , Histones/metabolism , Humans , Hydrogen Peroxide/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Microscopy, Fluorescence , Oxidants/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Rad51 Recombinase/metabolism , Tumor Stem Cell Assay , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Bioorg Med Chem Lett ; 22(7): 2609-12, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22374217

ABSTRACT

Pyridyl aminothiazoles comprise a novel class of ATP-competitive Chk1 inhibitors with excellent inhibitory potential. Modification of the core with ethylenediamine amides provides compounds with low picomolar potency and very high residence times. Investigation of binding parameters of such compounds using X-ray crystallography and molecular dynamics simulations revealed multiple hydrogen bonds to the enzyme backbone as well as stabilization of the conserved water molecules network in the hydrophobic binding region.


Subject(s)
Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/chemistry , Pyridines/chemical synthesis , Thiazoles/chemical synthesis , Amides/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Design , Ethylenediamines/chemistry , Humans , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , Thiazoles/pharmacology , Water/chemistry
4.
Bioorg Med Chem Lett ; 22(7): 2613-9, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22365762

ABSTRACT

Translation of significant biochemical activity of pyridyl aminothiazole class of Chk1 inhibitors into functional CEA potency required analysis and adjustment of both physical properties and kinase selectivity profile of the series. The steps toward optimization of cellular potency included elimination of CDK7 activity, reduction of molecular weight and polar surface area and increase in lipophilicity of the molecules in the series.


Subject(s)
Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/chemistry , Pyridines/chemical synthesis , Thiazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Membrane Permeability , Checkpoint Kinase 1 , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry , Drug Design , Halogenation , Humans , Kinetics , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , Thiazoles/pharmacology , Cyclin-Dependent Kinase-Activating Kinase
5.
Clin Cancer Res ; 17(17): 5638-48, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21799033

ABSTRACT

PURPOSE: Radiotherapy is commonly used to treat a variety of solid tumors. However, improvements in the therapeutic ratio for several disease sites are sorely needed, leading us to assess molecularly targeted therapeutics as radiosensitizers. The aim of this study was to assess the wee1 kinase inhibitor, MK-1775, for its ability to radiosensitize human tumor cells. EXPERIMENTAL DESIGN: Human tumor cells derived from lung, breast, and prostate cancers were tested for radiosensitization by MK-1775 using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of MK-1775 to abrogate the radiation-induced G2 block, thereby allowing cells harboring DNA lesions to prematurely progress into mitosis, was determined using flow cytometry and detection of γ-H2AX foci. The in vivo efficacy of the combination of MK-1775 and radiation was assessed by tumor growth delay experiments using a human lung cancer cell line growing as a xenograft tumor in nude mice. RESULTS: Clonogenic survival analyses indicated that nanomolar concentrations of MK-1775 radiosensitized p53-defective human lung, breast, and prostate cancer cells but not similar lines with wild-type p53. Consistent with its ability to radiosensitize, MK-1775 abrogated the radiation-induced G2 block in p53-defective cells but not in p53 wild-type lines. MK-1775 also significantly enhanced the antitumor efficacy of radiation in vivo as shown in tumor growth delay studies, again for p53-defective tumors. CONCLUSIONS: These results indicate that p53-defective human tumor cells are significantly radiosensitized by the potent and selective wee1 kinase inhibitor, MK-1775, in both the in vitro and in vivo settings. Taken together, our findings strongly support the clinical evaluation of MK-1775 in combination with radiation.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Neoplasms , Nuclear Proteins/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Radiation-Sensitizing Agents/pharmacology , Tumor Suppressor Protein p53/deficiency , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Combined Modality Therapy , Female , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Male , Mice , Mice, Nude , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidinones , Transplantation, Heterologous , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
6.
J Biol Chem ; 286(35): 30706-30713, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21737452

ABSTRACT

Hepatocellular carcinoma (HCC) is a heterogeneous and highly aggressive malignancy, for which there are no effective cures. Identification of a malignant stemlike subtype of HCC may offer patients with a dismal prognosis a potential targeted therapy using c-MET and Wnt pathway inhibitors. MicroRNAs (miRNAs) show promise as diagnostic and prognostic tools for cancer detection and stratification. Using a TRE-c-Met-driven transgenic HCC mouse model, we identified a cluster of 23 miRNAs that is encoded within the Dlk1-Gtl2 imprinted region on chromosome 12qF1 overexpressed in all of the isolated liver tumors. Interestingly, this region is conserved among mammalian species and maps to the human DLK1-DIO3 region on chromosome 14q32.2. We thus examined the expression of the DLK1-DIO3 miRNA cluster in a cohort of 97 hepatitis B virus-associated HCC patients and identified a subgroup (n = 18) of patients showing strong coordinate overexpression of miRNAs in this cluster but not in other cancer types (breast, lung, kidney, stomach, and colon) that were tested. Expression levels of imprinted gene transcripts from neighboring loci in this 14q32.2 region and from a subset of other imprinted sites were concomitantly elevated in human HCC. Interestingly, overexpression of the DLK1-DIO3 miRNA cluster was positively correlated with HCC stem cell markers (CD133, CD90, EpCAM, Nestin) and associated with a high level of serum α-fetoprotein, a conventional biomarker for liver cancer, and poor survival rate in HCC patients. In conclusion, our findings suggest that coordinate up-regulation of the DLK1-DIO3 miRNA cluster at 14q32.2 may define a novel molecular (stem cell-like) subtype of HCC associated with poor prognosis.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Chromosomes, Human, Pair 14/genetics , Intercellular Signaling Peptides and Proteins/genetics , Iodide Peroxidase/genetics , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Membrane Proteins/genetics , MicroRNAs/genetics , Biomarkers, Tumor/metabolism , Calcium-Binding Proteins , Cohort Studies , Humans , Liver/metabolism , MicroRNAs/metabolism , Multigene Family , Prognosis , Tissue Distribution , Treatment Outcome , Up-Regulation
7.
Br J Haematol ; 147(5): 672-6, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19751238

ABSTRACT

This study characterized the preclinical anti-myeloma activity of VE465, a low molecular weight pan-Aurora kinase inhibitor. After 96-h drug exposure, several multiple myeloma (MM) cell lines were more sensitive to VE465 compared to non-malignant cells. The anti-MM activity of VE465 was maintained in the presence of interleukin-6 and, interestingly, enhanced by co-culture with stromal cells. However, primary MM cells were less responsive than cell lines. Combinations with dexamethasone (Dex), doxorubicin (Doxo) and bortezomib showed no antagonism. Our study highlights the potential role of the tumour microenvironment in modulating the activity of this drug class.


Subject(s)
Antineoplastic Agents/pharmacology , Multiple Myeloma/pathology , Piperazines/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Aurora Kinases , Cell Communication/drug effects , Cell Cycle/drug effects , Coculture Techniques , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor/methods , Hematopoietic Stem Cells/cytology , Humans , Tumor Cells, Cultured
8.
Arch Biochem Biophys ; 484(1): 1-7, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19467625

ABSTRACT

A number of inhibitors of kinesin spindle protein (KSP) have been described, which are known from X-ray crystallography studies to bind to an induced fit pocket defined by the L5 loop. We describe the characterization of eight mutant forms of KSP in which six residues that line this pocket have been altered. Mutants were analyzed by measuring rates of enzyme catalysis, in the presence and absence of six KSP inhibitors of four diverse structural classes and of varied ATP-competition status. Our analysis was in agreement with the model of binding established by the structural studies and suggests that binding energy is well distributed across functional groups in these molecules. The majority of the mutants retained significant enzymatic activity while diminishing inhibitor binding, indicating potential for the development of drug resistance. These data provide detailed information on interactions between inhibitor and binding pocket at the functional group level and enable the development of novel KSP inhibitors.


Subject(s)
Kinesins/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding, Competitive , Biocatalysis , Crystallography, X-Ray , Humans , Kinesins/chemistry , Kinesins/genetics , Kinesins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Sequence Homology, Amino Acid
9.
Bioorg Med Chem Lett ; 19(4): 1240-4, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19155174

ABSTRACT

A high throughput screening campaign was designed to identify allosteric inhibitors of Chk1 kinase by testing compounds at high concentration. Activity was then observed at K(m) for ATP and at near-physiological concentrations of ATP. This strategy led to the discovery of a non-ATP competitive thioquinazolinone series which was optimized for potency and stability. An X-ray crystal structure for the complex of our best inhibitor bound to Chk1 was solved, indicating that it binds to an allosteric site approximately 13A from the ATP binding site. Preliminary data is presented for several of these compounds.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Binding Sites , Checkpoint Kinase 1 , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Humans , Molecular Conformation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Protein Kinases/metabolism , Quinazolines/chemistry
10.
Clin Cancer Res ; 14(19): 6106-15, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18829489

ABSTRACT

PURPOSE: We determined the effects of vorinostat (suberoylanalide hydroxamic acid) and/or MK-0457 (VX-680), an Aurora kinase inhibitor on the cultured human (HL-60, OCI-AML3, and K562) and primary acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML), as well as on the murine pro-B BaF3 cells with ectopic expression of the unmutated and mutant forms of Bcr-Abl. EXPERIMENTAL DESIGN: Following exposure to MK-0457 and/or vorinostat, apoptosis, loss of viability, as well as activity and levels of Aurora kinase and Bcr-Abl proteins were determined. RESULTS: Treatment with MK-0457 decreased the phosphorylation of Aurora kinase substrates including serine (S)10 on histone H3 and survivin, and led to aberrant mitosis, DNA endoreduplication as well as apoptosis of the cultured human acute leukemia HL-60, OCI-AML3, and K562 cells. Combined treatment with vorinostat and MK-0457 resulted in greater attenuation of Aurora and Bcr-Abl (in K562) kinase activity and levels as well as synergistically induced apoptosis of OCI-AML3, HL-60, and K562 cells. MK-0457 plus vorinostat also induced synergistic apoptosis of BaF3 cells with ectopic overexpression of wild-type or mutant Bcr-Abl. Finally, cotreatment with MK-0457 and vorinostat induced more loss of viability of primary AML and imatinib-refractory CML than treatment with either agent alone, but exhibited minimal toxicity to normal CD34+ progenitor cells. CONCLUSIONS: Combined in vitro treatment with MK-0457 and vorinostat is highly active against cultured and primary leukemia cells. These findings merit in vivo testing of the combination against human AML and CML cells, especially against imatinib mesylate-resistant Bcr-AblT315I-expressing CML Cells.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hydroxamic Acids/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Piperazines/administration & dosage , Animals , Cell Line, Tumor , Drug Synergism , Fusion Proteins, bcr-abl/metabolism , HL-60 Cells , Histones/metabolism , Humans , Inhibitor of Apoptosis Proteins , K562 Cells , Mice , Microtubule-Associated Proteins/metabolism , Mutation , Neoplasm Proteins/metabolism , Survivin , Vorinostat
11.
J Med Chem ; 51(14): 4239-52, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18578472

ABSTRACT

Inhibition of kinesin spindle protein (KSP) is a novel mechanism for treatment of cancer with the potential to overcome limitations associated with currently employed cytotoxic agents. Herein, we describe a C2-hydroxymethyl dihydropyrrole KSP inhibitor ( 11) that circumvents hERG channel binding and poor in vivo potency, issues that limited earlier compounds from our program. However, introduction of the C2-hydroxymethyl group caused 11 to be a substrate for cellular efflux by P-glycoprotein (Pgp). Utilizing knowledge garnered from previous KSP inhibitors, we found that beta-fluorination modulated the p K a of the piperidine nitrogen and reduced Pgp efflux, but the resulting compound ( 14) generated a toxic metabolite in vivo. Incorporation of fluorine in a strategic, metabolically benign position by synthesis of an N-methyl-3-fluoro-4-(aminomethyl)piperidine urea led to compound 30 that has an optimal in vitro and metabolic profile. Compound 30 (MK-0731) was recently studied in a phase I clinical trial in patients with taxane-refractory solid tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Kinesins/antagonists & inhibitors , Neoplasms/enzymology , Piperidines/pharmacology , Pyrroles/pharmacology , Taxoids/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , Taxoids/therapeutic use
12.
Arch Biochem Biophys ; 469(2): 220-31, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17999913

ABSTRACT

The kinesin spindle protein (KSP, also known as Eg5) is essential for the proper separation of spindle poles during mitosis, and inhibition results in mitotic arrest and the formation of characteristic monoaster spindles. Several distinct classes of KSP inhibitors have been described previously in the public and patent literature. However, most appear to share a common induced-fit allosteric binding site, suggesting a common mechanism of inhibition. In a high-throughput screen for inhibitors of KSP, a novel class of thiazole-containing inhibitors was identified. Unlike the previously described allosteric KSP inhibitors, the thiazoles described here show ATP competitive kinetic behavior, consistent with binding within the nucleotide binding pocket. Although they bind to a pocket that is highly conserved across kinesins, these molecules exhibit significant selectivity for KSP over other kinesins and other ATP-utilizing enzymes. Several of these compounds are active in cells and produce a phenotype similar to that observed with previously published allosteric inhibitors of KSP.


Subject(s)
Adenosine Triphosphate/metabolism , Biochemistry/methods , Kinesins/antagonists & inhibitors , Kinesins/chemistry , Mitosis , Adenosine Triphosphate/chemistry , Allosteric Site , Binding, Competitive , Drug Design , Humans , Kinesins/metabolism , Models, Biological , Models, Chemical , Nucleotides/chemistry , Phenotype , Protein Binding , Thiazoles/pharmacology
14.
Bioorg Med Chem Lett ; 17(22): 6280-5, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17900896

ABSTRACT

From HTS lead 1, a novel benzoisoquinolinone class of ATP-competitive Chk1 inhibitors was devised and synthesized via a photochemical route. Using X-ray crystallography as a guide, potency was rapidly enhanced through the installation of a tethered basic amine designed to interact with an acidic residue (Glu91) in the enzyme pocket. Further SAR was explored at the solvent front and near to the H1 pocket and resulted in the discovery of low MW, sub-nanomolar inhibitors of Chk1.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein Kinases/drug effects , Quinolones/chemical synthesis , Quinolones/pharmacology , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Photochemistry , Protein Kinases/chemistry , Quinolones/chemistry , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 17(19): 5390-5, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17761419

ABSTRACT

3,5-diaryl-4,5-dihydropyrazoles were discovered to be potent KSP inhibitors with excellent in vivo potency. These enzyme inhibitors possess desirable physical properties that can be readily modified by incorporation of a weakly basic amine. Careful adjustment of amine basicity was essential for preserving cellular potency in a multidrug resistant cell line while maintaining good aqueous solubility.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Antimitotic Agents/chemical synthesis , Antimitotic Agents/pharmacology , Kinesins/antagonists & inhibitors , Mitosis/drug effects , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chemical Phenomena , Chemistry, Physical , Drug Design , Drug Resistance, Neoplasm , Genes, MDR/drug effects , Humans , Indicators and Reagents , Solubility , Stereoisomerism , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 17(21): 5989-94, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17804227

ABSTRACT

The development of 2,5-dihydro-4H-pyrazolo[4,3-c]quinolin-4-ones as inhibitors of Chk1 kinase is described. Introduction of a fused ring at the C7/C8 positions of the pyrazoloquinolinone provided an increase in potency while guidance from overlapping inhibitor bound Chk1 X-ray crystal structures contributed to the discovery of a potent and solubilizing propyl amine moiety in compound 52 (Chk1 IC(50)=3.1 nM).


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Quinolones/pharmacology , Checkpoint Kinase 1 , Crystallography, X-Ray , Models, Molecular , Protein Kinase Inhibitors/chemistry , Quinolones/chemistry , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 17(20): 5671-6, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17804233

ABSTRACT

Observations from two structurally related series of KSP inhibitors led to the proposal and discovery of dihydropyrazolobenzoxazines that possess ideal properties for cancer drug development. The synthesis and characterization of this class of inhibitors along with relevant pharmacokinetic and in vivo data are presented. The synthesis is highlighted by a key [3+2] cycloaddition to form the pyrazolobenzoxazine core followed by diastereospecific installation of a quaternary center.


Subject(s)
Benzoxazines/chemistry , Benzoxazines/pharmacology , Drug Design , Kinesins/antagonists & inhibitors , Kinesins/metabolism , Mitosis/drug effects , Pyrazoles/chemistry , Animals , Benzoxazines/chemical synthesis , Benzoxazines/pharmacokinetics , Cell Line , Dogs , Humans , Hydrogen/chemistry , Molecular Structure , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 17(10): 2697-702, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17395460

ABSTRACT

Installation of a C2-aminopropyl side chain to the 2,4-diaryl-2,5-dihydropyrrole series of kinesin spindle protein (KSP) inhibitors results in potent, water soluble compounds, but the aminopropyl group induces susceptibility to cellular efflux by P-glycoprotein (Pgp). We show that by carefully modulating the basicity of the amino group by beta-fluorination, this series of inhibitors maintains potency against KSP and has greatly improved efficacy in a Pgp-overexpressing cell line. The discovery that cellular efflux by Pgp can be overcome by carefully modulating the basicity of an amine may be of general use to medicinal chemists attempting to transform leading compounds into cancer cell- or CNS-penetrant drugs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Fluorine/metabolism , Kinesins/antagonists & inhibitors , Propylamines/pharmacology , Pyrroles/pharmacology , Biological Transport , Cytoskeleton , Hydrogen-Ion Concentration , Kinesins/metabolism , Solubility , Water
19.
Bioorg Med Chem Lett ; 16(22): 5907-12, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-16990002

ABSTRACT

Through a comparison of X-ray co-crystallographic data for 1 and 2 in the Chek1 active site, it was hypothesized that the affinity of the indolylquinolinone series (2) for Chek1 kinase would be improved via C6 substitution into the hydrophobic region I (HI) pocket. An efficient route to 6-bromo-3-indolyl-quinolinone (9) was developed, and this series was rapidly optimized for potency by modification at C6. A general trend was observed among these low nanomolar Chek1 inhibitors that compounds with multiple basic amines, or elevated polar surface area (PSA) exhibited poor cell potency. Minimization of these parameters (basic amines, PSA) resulted in Chek1 inhibitors with improved cell potency, and preliminary pharmacokinetic data are presented for several of these compounds.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/chemistry , Protein Kinases/drug effects , Quinolones/chemistry , Animals , Binding Sites , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Hydrophobic and Hydrophilic Interactions , Protein Kinases/metabolism , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 16(23): 6049-53, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16978863

ABSTRACT

The development of 3-(indol-2-yl)indazoles as inhibitors of Chek1 kinase is described. Introduction of amides and heteroaryl groups at the C6 position of the indazole ring system provided sufficient Chek1 potency and selectivity over Cdk7 to permit escape from DNA damage-induced arrest in a cellular assay. Enzyme potency against Chek1 was optimized by the incorporation of a hydroxymethyl triazole moiety in compound 21 (Chek1 IC(50)=0.30nM) that was shown by X-ray crystallography to displace one of three highly conserved water molecules in the HI region of the ATP-binding cleft.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Protein Kinases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Humans , Indazoles/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...