Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Mol Biol Rep ; 50(7): 6265-6271, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37171550

ABSTRACT

BACKGROUND: The CREB1 gene encodes the cAMP response element binding protein 1 (CREB1), a leucine zipper transcription factor that regulates cellular gene expression in response to elevated levels of intracellular cAMP. When activated by phosphorylation, CREB1 binds to the cAMP response element (CRE) of the promoters of its target genes. CREB1 is an essential component in many physiological processes, and its function is correlated to neurodevelopment, plasticity and cell survival, and learning and memory. The NFATC2 gene codes for the nuclear factor of activated T-cells 2 protein. The NFATC2 protein is a DNA-binding protein that functions as an inducer of gene transcription during immune response. METHODS AND RESULTS: The aim of the present study was to examine the developmental expression of porcine CREB1 and NFACT2 transcripts. The expression of CREB1 and NFACT2 mRNA was examined by quantitative real-time RT-PCR. For the CREB1 transcript, we found significant reduction in transcript levels in the brain stem and basal ganglia during porcine embryo development, determined from day 60 to day 115 of gestation. In contrast, a significant increase in CREB1 mRNA was detected in the lungs during embryo development. No significant changes in the NFATC2 transcript were detected in porcine brain tissue during embryo development. CONCLUSIONS: Differential CREB1 mRNA expression was found in pig brain tissues during embryo development.


Subject(s)
Cell Nucleus , Cyclic AMP Response Element-Binding Protein , Animals , Swine/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation , Embryonic Development , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Cell Rep Med ; 3(9): 100740, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36099918

ABSTRACT

The established causal genes in Alzheimer's disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease's initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%-3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of ß-amyloid (Aß) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Animals , Biomarkers , Haploinsufficiency/genetics , Humans , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Swine , Swine, Miniature/metabolism
3.
Cancers (Basel) ; 13(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208747

ABSTRACT

The generation of large transgenic animals is impeded by complex cloning, long maturation and gastrulation times. An introduction of multiple gene alterations increases the complexity. We have cloned a transgenic Cas9 minipig to introduce multiple mutations by CRISPR in somatic cells. Transgenic Cas9 pigs were generated by somatic cell nuclear transfer and were backcrossed to Göttingen Minipigs for two generations. Cas9 expression was controlled by FlpO-mediated recombination and was visualized by translation from red to yellow fluorescent protein. In vitro analyses in primary fibroblasts, keratinocytes and lung epithelial cells confirmed the genetic alterations executed by the viral delivery of single guide RNAs (sgRNA) to the target cells. Moreover, multiple gene alterations could be introduced simultaneously in a cell by viral delivery of sgRNAs. Cells with loss of TP53, PTEN and gain-of-function mutation in KRASG12D showed increased proliferation, confirming a transformation of the primary cells. An in vivo activation of Cas9 expression could be induced by viral delivery to the skin. Overall, we have generated a minipig with conditional expression of Cas9, where multiple gene alterations can be introduced to somatic cells by viral delivery of sgRNA. The development of a transgenic Cas9 minipig facilitates the creation of complex pre-clinical models for cancer research.

4.
Animals (Basel) ; 11(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535698

ABSTRACT

This study describes a successful protocol for establishing cell lines from the threatened Triturus cristatus in terms of collection, preparing, establishing, cryopreserving, thawing and quality checking. Different parameters such as media, media change, fresh vs. cryopreserved tissue and seeding density were tested to optimize culture conditions for this species. With fresh tissue, no considerable differences in the use of two different media were found, but with cryopreserved tissue, a combination of ITS (insulin/transferrin/selenite) and 2-mercaptoethanol had a positive effect on growth. Real-time measurements on the cell lines were used, for the first time in amphibian cells, to investigate the effect of different treatments such as media change with or without washing. Media change had a positive impact on the cells, whereas the effect was negative when combined with washing. It is concluded that establishment of cell lines is possible from the great crested newt, especially when using fresh tissue, but much more challenging if the tissue has been cryopreserved. Real-time measurement during cell culture is a useful tool to visualize the sensitivity of amphibian cells during different culture treatments.

5.
Reprod Biol ; 20(4): 595-599, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33041222

ABSTRACT

Based on in-vitro produced (IVP) bovine embryos, embryo proper and embryonic/fetal membranes were studied in 12 pregnancies from day 26 to 47. The embryos/fetuses displayed external as well as internal development of organs and structures according to the expectations from comparable in-vivo studies. However, the embryonic/fetal membranes were shorter than those reported for in-vivo-derived embryos/fetuses on days 26-35 of calculated age, whereas on days 41-47 they were of comparable lengths.


Subject(s)
Cattle/embryology , Embryonic Development/physiology , Extraembryonic Membranes/growth & development , Fertilization in Vitro/veterinary , Gestational Age , Animals , Embryo Transfer/veterinary , Female , Fertilization in Vitro/methods , Pregnancy
6.
Physiol Genomics ; 52(7): 269-279, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32508252

ABSTRACT

Modifications of the endometrial transcriptome at day 7 of the estrus cycle are crucial to maintain gestation after transfer of in vitro-produced (IVP) embryos, although these changes are still largely unknown. The aim of this study was to identify genes, and their related biological mechanisms, important for pregnancy establishment based on the endometrial transcriptome of recipient lactating dairy cows that become pregnant in the subsequent estrus cycle, upon transfer of IVP embryos. Endometrial biopsies were taken from Holstein Friesian cows on day 6-8 of the estrus cycle followed by embryo transfer in the following cycle. Animals were classified retrospectively as pregnant (PR, n = 8) or nonpregnant (non-PR, n = 11) cows, according to pregnancy status at 26-47 days. Extracted mRNAs from endometrial samples were sequenced with an Illumina platform to determine differentially expressed genes (DEG) between the endometrial transcriptome from PR and non-PR cows. There were 111 DEG (false discovery rate < 0.05), which were mainly related to extracellular matrix interaction, histotroph metabolic composition, prostaglandin synthesis, transforming growth factor-ß signaling as well as inflammation and leukocyte activation. Comparison of these DEG with DEG identified in two public external data sets confirmed the more fertile endometrial molecular profile of PR cows. In conclusion, this study provides insights into the key early endometrial mechanisms for pregnancy establishment, after IVP embryo transfer in dairy cows.


Subject(s)
Cattle/genetics , Diestrus/genetics , Embryo Transfer/veterinary , Endometrium/metabolism , Fertility/genetics , Fertilization in Vitro/veterinary , Transcriptome , Animals , Biopsy , Cattle/blood , Embryo Transfer/methods , Endometrium/pathology , Female , Fertilization in Vitro/methods , Gene Expression Regulation , Lactation , Pregnancy , Progesterone/blood , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , RNA-Seq , Retrospective Studies
7.
Reprod Toxicol ; 89: 115-123, 2019 10.
Article in English | MEDLINE | ID: mdl-31301413

ABSTRACT

Litter size and other conventional measures in rodents are common end-points in the assessment of xenobiotics for reprotoxic effects. However, since litter size may be normal despite reduced semen quality, we established and tested a mouse in vitro fertilization/in vitro culture (IVF/IVC) system to assess other aspects of reprotoxicity of xenobiotic exposure. Two pesticides, vinclozolin (V) and chlormequat (C), were added to feed in low (40 and 900 ppm, respectively) and high (300 and 2700 ppm, respectively) doses and compared to control (nil pesticide). Exposed males were used for natural mating to evaluate litter size and then used for IVF/IVC and sperm evaluation. The IVF/IVC system detected significant adverse effect of high dose of vinclozolin on blastocyst formation, which was not detected by conventional measures such as litter size or sperm motility and viability. We conclude that assessment based on IVF/IVC measures may complement litter size and other conventional end-points.


Subject(s)
Oocytes/drug effects , Paternal Exposure/adverse effects , Reproduction/drug effects , Spermatozoa/drug effects , Xenobiotics/toxicity , Animals , Chlormequat/toxicity , Dose-Response Relationship, Drug , Female , Fertilization in Vitro , Litter Size/drug effects , Male , Mice , Oxazoles/toxicity , Pregnancy , Sperm Count , Sperm Motility/drug effects
8.
Cell Discov ; 5: 16, 2019.
Article in English | MEDLINE | ID: mdl-30911407

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder for which no cure exists. The disease is characterized by premature aging and inevitable death in adolescence due to cardiovascular complications. Most HGPS patients carry a heterozygous de novo LMNA c.1824C > T mutation, which provokes the expression of a dominant-negative mutant protein called progerin. Therapies proven effective in HGPS-like mouse models have yielded only modest benefit in HGPS clinical trials. To overcome the gap between HGPS mouse models and patients, we have generated by CRISPR-Cas9 gene editing the first large animal model for HGPS, a knockin heterozygous LMNA c.1824C > T Yucatan minipig. Like HGPS patients, HGPS minipigs endogenously co-express progerin and normal lamin A/C, and exhibit severe growth retardation, lipodystrophy, skin and bone alterations, cardiovascular disease, and die around puberty. Remarkably, the HGPS minipigs recapitulate critical cardiovascular alterations seen in patients, such as left ventricular diastolic dysfunction, altered cardiac electrical activity, and loss of vascular smooth muscle cells. Our analysis also revealed reduced myocardial perfusion due to microvascular damage and myocardial interstitial fibrosis, previously undescribed readouts potentially useful for monitoring disease progression in patients. The HGPS minipigs provide an appropriate preclinical model in which to test human-size interventional devices and optimize candidate therapies before advancing to clinical trials, thus accelerating the development of effective applications for HGPS patients.

9.
J Assist Reprod Genet ; 36(3): 413-424, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30443692

ABSTRACT

PURPOSE: Oocyte maturation is a complex process involving nuclear and cytoplasmic modulations, during which oocytes acquire their ability to become fertilized and support embryonic development. The oocyte is apparently "primed" for maturation during its development in the dominant follicle. As bovine oocytes immediately resume meiosis when cultured, it was hypothesized that delaying resumption of meiosis with cyclic nucleotide modulators before in vitro maturation (IVM) would allow the oocytes to acquire improved developmental competence. METHODS: We tested the Simulated Physiological Oocyte Maturation (SPOM) system that uses forskolin and 3-isobutyl-1-methylxanthine for 2 h prior to IVM against two different systems of conventional IVM (Con-IVM). We evaluated the ultrastructure of matured oocytes and blastocysts and also assessed the expression of 96 genes related to embryo quality in the blastocysts. RESULTS: In summary, the SPOM system resulted in lower blastocyst rates than both Con-IVM systems (30 ± 9.1 vs. 35 ± 8.7; 29 ± 2.6 vs. 38 ± 2.8). Mature SPOM oocytes had significantly increased volume and number of vesicles, reduced volume and surface density of large smooth endoplasmic reticulum clusters, and lower number of mitochondria than Con-IVM oocytes. SPOM blastocysts showed only subtle differences with parallel undulations of adjacent trophectoderm plasma membranes and peripherally localized ribosomes in cells of the inner cell mass compared with Con-IVM blastocysts. SPOM blastocysts, however, displayed significant downregulation of genes related to embryonic developmental potential when compared to Con-IVM blastocysts. CONCLUSIONS: Our results show that the use of the current version of the SPOM system may have adverse effects on oocytes and blastocysts calling for optimized protocols for improving oocyte competence.


Subject(s)
Embryonic Development/drug effects , Fertilization in Vitro/drug effects , In Vitro Oocyte Maturation Techniques , Oocytes/drug effects , 1-Methyl-3-isobutylxanthine/administration & dosage , Animals , Blastocyst/drug effects , Blastocyst/pathology , Cattle , Colforsin/administration & dosage , Cumulus Cells/drug effects , Female , Meiosis/genetics , Oocytes/growth & development , Oocytes/pathology , Oogenesis/drug effects , Ovarian Follicle/drug effects , Ovarian Follicle/growth & development , Pregnancy , Ribosomes/drug effects
10.
Toxicol In Vitro ; 55: 58-61, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30476541

ABSTRACT

Xenobiotics, such as chemicals and pesticides, may result in adverse effects on reproduction in human and animals. Using in-vitro embryo production as a testing system reveals details of fertilization (IVF) and early embryonic development (IVC). The aim of our study was to perform a systematical calibration of sperm concentration in an IVF/IVC system, using an outbred mouse strain, and further determine the sperm concentration that furnishes a sensitive assessment of sperm fertilizing capacity in relation to reprotoxic evaluations. By performing breakpoint analysis, the results revealed a maximum two-cell percentage (51%, 95% CI: 38 to 69%) at 3.6 × 104 sperm/ml (95% CI: 2.1 × 104 to 6.1 × 104). For future application of the IVF/IVC system, a sperm concentration lower than this breakpoint concentration is required to be within the responsive range for determining sperm fertilizing capacity. We conclude that a relatively low sperm concentration (2.5 × 104 sperm/ml) is a precondition in a mouse IVF/IVC system in order to detect potential reprotoxic effects on sperm fertilizing capacity. Our study illustrates that a systematic approach is necessary for validation and appropriate use of such in-vitro system used for reproductive toxicity testing.


Subject(s)
Fertilization in Vitro , Spermatozoa , Toxicity Tests/methods , Animals , Embryonic Development/drug effects , Female , Male , Mice, Inbred C57BL , Pregnancy
11.
J Proteome Res ; 18(1): 30-47, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30365323

ABSTRACT

Miniature-pig models for human metabolic disorders such as obesity and metabolic syndrome are gaining popularity. However, in-depth knowledge on the phenotypic and metabolic effects of metabolic dysregulation is lacking, and ad libitum feeding is not well-characterized in these pig breeds. Therefore, an investigation was performed into the metabolome of Yucatan minipigs fed ad libitum or restricted diets. Furthermore, we used cloned and conventional minipigs to assess if cloning reflects a presumably lowered variation between subjects. For 5 months, 17 female Yucatan minipigs were fed either ad libitum or restricted Western-style diets. Serum, urine, and liver tissues were collected and analyzed by non-targeted liquid chromatography-mass spectrometry metabolomics and by biochemical analyses. Several metabolic pathways were deregulated as a result of obesity and increased energy-dense feed intake, particularly the hepatic glutathione pathway and the pantothenic acid and tryptophan metabolic pathways in serum and urine. Although cloned minipigs were phenotypically similar to wild-type minipigs, the metabolomics analysis of serum and liver tissues showed several altered pathways, such as amino acid and purine metabolism. These changes, as an effect of cloning, could limit the use of cloned models in dietary intervention studies and provides no evidence of decreased variability between subjects.


Subject(s)
Diet, Western/adverse effects , Metabolomics/methods , Obesity/metabolism , Animals , Cloning, Organism/adverse effects , Diet , Disease Models, Animal , Energy Intake , Female , Swine , Swine, Miniature
12.
Anim Reprod ; 16(3): 508-523, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-32435294

ABSTRACT

The veterinary and animal science professions are rapidly developing and their inherent and historical connection to agriculture is challenged by more biomedical and medical directions of research. While some consider this development as a risk of losing identity, it may also be seen as an opportunity for developing further and more sophisticated competences that may ultimately feed back to veterinary and animal science in a synergistic way. The present review describes how agriculture-related studies on bovine in vitro embryo production through studies of putative bovine and porcine embryonic stem cells led the way to more sophisticated studies of human induced pluripotent stem cells (iPSCs) using e.g. gene editing for modeling of neurodegeneration in man. However, instead of being a blind diversion from veterinary and animal science into medicine, these advanced studies of human iPSC-derived neurons build a set of competences that allowed us, in a more competent way, to focus on novel aspects of more veterinary and agricultural relevance in the form of porcine and canine iPSCs. These types of animal stem cells are of biomedical importance for modeling of iPSC-based therapy in man, but in particular the canine iPSCs are also important for understanding and modeling canine diseases, as e.g. canine cognitive dysfunction, for the benefit and therapy of dogs.

13.
Mol Oncol ; 11(11): 1616-1629, 2017 11.
Article in English | MEDLINE | ID: mdl-28881081

ABSTRACT

Transgenic porcine cancer models bring novel possibilities for research. Their physical similarities with humans enable the use of surgical procedures and treatment approaches used for patients, which facilitates clinical translation. Here, we aimed to develop an inducible oncopig model of intestinal cancer. Transgenic (TG) minipigs were generated using somatic cell nuclear transfer by handmade cloning. The pigs encode two TG cassettes: (a) an Flp recombinase-inducible oncogene cassette containing KRAS-G12D, cMYC, SV40LT - which inhibits p53 - and pRB and (b) a 4-hydroxytamoxifen (4-OHT)-inducible Flp recombinase activator cassette controlled by the intestinal epithelium-specific villin promoter. Thirteen viable transgenic minipigs were born. The ability of 4-OHT to activate the oncogene cassette was confirmed in vitro in TG colonic organoids and ex vivo in tissue biopsies obtained by colonoscopy. In order to provide proof of principle that the oncogene cassette could also successfully be activated in vivo, three pigs were perorally treated with 400 mg tamoxifen for 2 × 5 days. After two months, one pig developed a duodenal neuroendocrine carcinoma with a lymph node metastasis. Molecular analysis of the carcinoma and metastasis confirmed activation of the oncogene cassette. No tumor formation was observed in untreated TG pigs or in the remaining two treated pigs. The latter indicates that tamoxifen delivery can probably be improved. In summary, we have generated a novel inducible oncopig model of intestinal cancer, which has the ability to form metastatic disease already two months after induction. The model may be helpful in bridging the gap between basic research and clinical usage. It opens new venues for longitudinal studies of tumor development and evolution, for preclinical assessment of new anticancer regimens, for pharmacology and toxicology assessments, as well as for studies into biological mechanisms of tumor formation and metastasis.


Subject(s)
Animals, Genetically Modified/genetics , Cloning, Organism/methods , Disease Models, Animal , Intestinal Neoplasms/genetics , Nuclear Transfer Techniques , Swine, Miniature/genetics , Animals , Embryo Culture Techniques/methods , Embryo Transfer/methods , Female , Humans , Intestinal Mucosa/metabolism , Intestinal Neoplasms/pathology , Intestines/pathology , Swine
14.
Transgenic Res ; 26(5): 603-612, 2017 10.
Article in English | MEDLINE | ID: mdl-28664456

ABSTRACT

Pancreatic cancer is the fourth leading course of cancer death and early detection of the disease is crucial for successful treatment. However, pancreatic cancer is difficult to detect in its earliest stages and once symptoms appear, the cancer has often progressed beyond possibility for curing. Research into the disease has been hampered by the lack of good models. We have generated a porcine model of pancreatic cancer with use of transgenic overexpression of an oncogene cassette containing MYC, KRAS G12D and SV40 LT. The expression was initiated from a modified Pdx-1 promoter during embryogenesis in a subset of pancreatic epithelial cells. Furthermore, cells expressing the oncogenes also expressed a yellow fluorescent protein (mVenus) and an inducible negative regulator protein (rtTR-KRAB). Cells where the Pdx-1 promoter had not been activated, expressed a red fluorescent protein (Katushka). In vitro analyses of cells obtained from the transgenic pigs showed increased proliferation and expression of the transgenes when activated. Induction of the repressor protein eliminated the oncogene expression and decreased cell proliferation. In vivo analysis identified foci of pancreatic cells expressing the oncogenes at day zero post farrowing. These populations expanded and formed hyperplastic foci, with beginning abnormality at day 45. Cells in the foci expressed the oncogenic proteins and the majority of the cells were positive for the proliferation marker, Ki67. We predict that this model could be used for advanced studies in pancreatic cancer in a large animal model with focus on early detection, treatment, and identification of new biomarkers.


Subject(s)
Animals, Genetically Modified , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Pancreatic Neoplasms/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Genes, myc/genetics , Humans , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Swine/genetics
15.
Dis Model Mech ; 10(7): 869-880, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28679670

ABSTRACT

Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and ß1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology.


Subject(s)
Gene Dosage , Integrin alpha2/genetics , Integrin beta1/genetics , Psoriasis/genetics , Acanthosis Nigricans/pathology , Animals , Animals, Genetically Modified , Cell Membrane/metabolism , Cloning, Molecular , Dermatitis/pathology , Genotype , Humans , Integrin alpha2/metabolism , Integrin beta1/metabolism , Keratinocytes/metabolism , Leukocytes/pathology , Phenotype , Protein Biosynthesis , Psoriasis/pathology , Skin/pathology , Sus scrofa
16.
Cell Reprogram ; 19(3): 171-179, 2017 06.
Article in English | MEDLINE | ID: mdl-28557623

ABSTRACT

The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.


Subject(s)
Cloning, Organism , Embryo, Mammalian/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Developmental , Animals , Embryo, Mammalian/cytology , Swine
17.
PLoS One ; 12(4): e0175464, 2017.
Article in English | MEDLINE | ID: mdl-28403200

ABSTRACT

The Ovum Pick Up-In vitro Production (OPU-IVP) of embryos is an advanced reproductive technology used in cattle production but the complex biological mechanisms behind IVP outcomes are not fully understood. In this study we sequenced RNA of granulosa cells collected from Holstein cows at oocyte aspiration prior to IVP, to identify candidate genes and biological mechanisms for favourable IVP-related traits in donor cows where IVP was performed separately for each animal. We identified 56 genes significantly associated with IVP scores (BL rate, kinetic and morphology). Among these, BEX2, HEY2, RGN, TNFAIP6 and TXNDC11 were negatively associated while Mx1 and STC1 were positively associated with all IVP scores. Functional analysis highlighted a wide range of biological mechanisms including apoptosis, cell development and proliferation and four key upstream regulators (COX2, IL1, PRL, TRIM24) involved in these mechanisms. We found a range of evidence that good IVP outcome is positively correlated with early follicular atresia. Furthermore we showed that high genetic index bulls can be used in breeding without reducing the IVP performances. These findings can contribute to the development of biomarkers from follicular fluid content and to improving Genomic Selection (GS) methods that utilize functional information in cattle breeding, allowing a widespread large scale application of GS-IVP.


Subject(s)
Granulosa Cells/metabolism , Animals , Biomarkers/metabolism , Cattle , Embryo Culture Techniques , Embryo Transfer , Female , Sequence Analysis, RNA , Transcriptome
18.
Anim Reprod Sci ; 178: 40-49, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28126267

ABSTRACT

Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3ß- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl-iPSCs) and embryonic germ cells (EGCs), which have earlier been characterized as being multipotent. The SCNT efficiencies of these stem cell lines were compared with that of the two fibroblast cell lines from which the iPSC lines were derived. The blastocyst rates for the 2i LIF DOX-iPSCs were 14.7%, for the 2i FGF Pl-iPSC 10.1%, and for the EGCs 34.5% compared with the fibroblast lines yielding 36.7% and 25.2%. The fibroblast- and EGC-derived embryos were used for embryo transfer and produced live offspring at similar low rates of efficiency (3.2 and 4.0%, respectively) and with several instances of malformations. In conclusion, potentially pluripotent porcine stem cells resulted in lower rates of embryonic development upon SCNT than multipotent stem cells and differentiated somatic cells.


Subject(s)
Cloning, Organism/veterinary , Nuclear Transfer Techniques/veterinary , Pluripotent Stem Cells/physiology , Swine/genetics , Swine/physiology , Animals , Animals, Genetically Modified , Cell Line , Cellular Reprogramming , Cloning, Organism/methods , Embryo Transfer/veterinary , Embryo, Mammalian/physiology , Embryonic Development , Female , Fibroblasts/physiology , Green Fluorescent Proteins , Male , Pregnancy
19.
Mol Reprod Dev ; 84(3): 229-245, 2017 03.
Article in English | MEDLINE | ID: mdl-28044390

ABSTRACT

Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed more light on the underlying biological mechanisms of porcine pluripotency. LIF-derived piPSCs were more successful than their FGF-derived counterparts in the generation of in vitro chimeras and in teratoma formation. When LIF piPSCs chimeras were transferred into surrogate sows and allowed to develop, only their prescence within the embryonic membranes could be detected. Whole-transcriptome analysis of the piPSCs and porcine neonatal fibroblasts showed that they clustered together, but apart from the two pluripotent cell populations of early porcine embryos, indicating incomplete reprogramming. Indeed, bioinformatic analysis of the pluripotency-related gene network of the LIF- versus FGF-derived piPSCs revealed that ZFP42 (REX1) expression was absent in both piPSC-like cells, whereas it was expressed in the porcine inner cell mass at Day 7/8. A second striking difference was the expression of ATOH1 in piPSC-like cells, which was absent in the inner cell mass. Moreover, our gene expression analyses plus correlation analyses of known pluripotency genes identified unique relationships between pluripotency genes in the inner cell mass, which are to some extent, in the piPSC-like cells. This deficiency in downstream gene activation and divergent gene expression may be underlie the inability to derive germ line-transmitting piPSCs, and provides unique insight into which genes are necessary to achieve fully reprogrammed piPSCs. 84: 229-245, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation/drug effects , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Leukemia Inhibitory Factor/pharmacology , Animals , Induced Pluripotent Stem Cells/cytology , Swine
20.
Reprod Fertil Dev ; 29(3): 557-564, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26391407

ABSTRACT

Already at first embryo cleavage subsequent blastocyst formation can be predicted based on morphology but the finer morphological details can be difficult to determine due to the presence of the zona pellucida (ZP). Therefore, we monitored zona-free porcine parthenogenetically activated (PA) embryos in a time-lapse system to: (1) describe and characterise the morphological activity of the cytoplasmic membrane and the distribution to the two nuclei during first cleavage and (2) determine the relationship between specific morphological activities and subsequent embryonic development. After ZP removal the membrane surface activities were clearly visible, so all cleaved embryos could be divided into two groups depending on the surface activity during first cleavage: regular morphology (MN) or irregular morphology with 'bumps' (MB). The two nuclei were more unequal in MB embryos in both nucleus size and DNA quantity. After first cleavage, MB embryos could be further divided into three types of irregularities (MB1, MB2, MB3) based on their subsequent behaviour. Clear differences in developmental patterns were found between MN and MB embryos, such as delayed first cleavage, compromised blastocyst formation and total cell number. The predictive value of these new types of morphological events was comparable to the more traditionally used time of first cleavage. In conclusion, zona-free embryos allow visualisation of finer morphological details that can provide an early prediction of embryo developmental potential, but further studies are needed on other type of embryos.


Subject(s)
Cell Membrane/metabolism , Embryonic Development/physiology , Zona Pellucida/metabolism , Animals , Blastocyst/cytology , Blastocyst/metabolism , Cytokinesis/physiology , Female , Parthenogenesis/physiology , Pregnancy , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...