Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
5.
Perfusion ; 39(1_suppl): 13S-22S, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651575

ABSTRACT

INTRODUCTION: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) improves end-organ perfusion in cardiogenic shock but may increase afterload, which can limit cardiac recovery. Left ventricular (LV) unloading strategies may aid cardiac recovery and prevent complications of increased afterload. However, there is no consensus on when and which unloading strategy should be used. METHODS: An online survey was distributed worldwide via the EuroELSO newsletter mailing list to describe contemporary international practice and evaluate heterogeneity in strategies for LV unloading. RESULTS: Of 192 respondents from 43 countries, 53% routinely use mechanical LV unloading, to promote ventricular recovery and/or to prevent complications. Of those that do not routinely unload, 65% cited risk of complications as the reason. The most common indications for unplanned unloading were reduced arterial line pulsatility (68%), pulmonary edema (64%) and LV dilatation (50%). An intra-aortic balloon pump was the most frequently used device for unloading followed by percutaneous left ventricular assist devices. Echocardiography was the most frequently used method to monitor the response to unloading. CONCLUSIONS: Significant variation exists with respect to international practice of ventricular unloading. Further research is required that compares the efficacy of different unloading strategies and a randomized comparison of routine mechanical unloading versus unplanned unloading.


Subject(s)
Extracorporeal Membrane Oxygenation , Humans , Extracorporeal Membrane Oxygenation/methods , Surveys and Questionnaires , Female , Male , Shock, Cardiogenic/therapy , Shock, Cardiogenic/physiopathology , Heart-Assist Devices
6.
Perfusion ; 39(1_suppl): 49S-65S, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654449

ABSTRACT

During veno-venous extracorporeal membrane oxygenation (V-V ECMO), blood is drained from the central venous circulation to be oxygenated and decarbonated by an artificial lung. It is then reinfused into the right heart and pulmonary circulation where further gas-exchange occurs. Each of these steps is characterized by a peculiar physiology that this manuscript analyses, with the aim of providing bedside tools for clinical care: we begin by describing the factors that affect the efficiency of blood drainage, such as patient and cannulae position, fluid status, cardiac output and ventilatory strategies. We then dig into the complexity of extracorporeal gas-exchange, with particular reference to the effects of extracorporeal blood-flow (ECBF), fraction of delivered oxygen (FdO2) and sweep gas-flow (SGF) on oxygenation and decarbonation. Subsequently, we focus on the reinfusion of arterialized blood into the right heart, highlighting the effects on recirculation and, more importantly, on right ventricular function. The importance and challenges of haemodynamic monitoring during V-V ECMO are also analysed. Finally, we detail the interdependence between extracorporeal circulation, native lung function and mechanical ventilation in providing adequate arterial blood gases while allowing lung rest. In the absence of evidence-based strategies to care for this particular group of patients, clinical practice is underpinned by a sound knowledge of the intricate physiology of V-V ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Humans , Extracorporeal Membrane Oxygenation/methods , Hemodynamics/physiology
9.
Intensive Care Med Exp ; 12(1): 31, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512544

ABSTRACT

BACKGROUND: The individual components of mechanical ventilation may have distinct effects on kidney perfusion and on the risk of developing acute kidney injury; we aimed to explore ventilatory predictors of acute kidney failure and the hemodynamic changes consequent to experimental high-power mechanical ventilation. METHODS: Secondary analysis of two animal studies focused on the outcomes of different mechanical power settings, including 78 pigs mechanically ventilated with high mechanical power for 48 h. The animals were categorized in four groups in accordance with the RIFLE criteria for acute kidney injury (AKI), using the end-experimental creatinine: (1) NO AKI: no increase in creatinine; (2) RIFLE 1-Risk: increase of creatinine of > 50%; (3) RIFLE 2-Injury: two-fold increase of creatinine; (4) RIFLE 3-Failure: three-fold increase of creatinine; RESULTS: The main ventilatory parameter associated with AKI was the positive end-expiratory pressure (PEEP) component of mechanical power. At 30 min from the initiation of high mechanical power ventilation, the heart rate and the pulmonary artery pressure progressively increased from group NO AKI to group RIFLE 3. At 48 h, the hemodynamic variables associated with AKI were the heart rate, cardiac output, mean perfusion pressure (the difference between mean arterial and central venous pressures) and central venous pressure. Linear regression and receiving operator characteristic analyses showed that PEEP-induced changes in mean perfusion pressure (mainly due to an increase in CVP) had the strongest association with AKI. CONCLUSIONS: In an experimental setting of ventilation with high mechanical power, higher PEEP had the strongest association with AKI. The most likely physiological determinant of AKI was an increase of pleural pressure and CVP with reduced mean perfusion pressure. These changes resulted from PEEP per se and from increase in fluid administration to compensate for hemodynamic impairment consequent to high PEEP.

10.
Intensive Care Med ; 50(2): 159-180, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38388984

ABSTRACT

This statement outlines a review of the literature and current practice concerning the prevalence, clinical significance, diagnosis and management of dyspnoea in critically ill, mechanically ventilated adult patients. It covers the definition, pathophysiology, epidemiology, short- and middle-term impact, detection and quantification, and prevention and treatment of dyspnoea. It represents a collaboration of the European Respiratory Society (ERS) and the European Society of Intensive Care Medicine (ESICM). Dyspnoea ranks among the most distressing experiences that human beings can endure. Approximately 40% of patients undergoing invasive mechanical ventilation in the intensive care unit (ICU) report dyspnoea, with an average intensity of 45 mm on a visual analogue scale from 0 to 100 mm. Although it shares many similarities with pain, dyspnoea can be far worse than pain in that it summons a primal fear response. As such, it merits universal and specific consideration. Dyspnoea must be identified, prevented and relieved in every patient. In the ICU, mechanically ventilated patients are at high risk of experiencing breathing difficulties because of their physiological status and, in some instances, because of mechanical ventilation itself. At the same time, mechanically ventilated patients have barriers to signalling their distress. Addressing this major clinical challenge mandates teaching and training, and involves ICU caregivers and patients. This is even more important because, as opposed to pain which has become a universal healthcare concern, very little attention has been paid to the identification and management of respiratory suffering in mechanically ventilated ICU patients.


Subject(s)
Medicine , Respiration, Artificial , Adult , Humans , Respiration, Artificial/adverse effects , Intensive Care Units , Dyspnea/etiology , Dyspnea/therapy , Pain
11.
Physiol Rep ; 12(4): e15954, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38366303

ABSTRACT

INTRODUCTION: The use of the pulmonary artery catheter has decreased overtime; central venous blood gases are generally used in place of mixed venous samples. We want to evaluate the accuracy of oxygen and carbon dioxide related parameters from a central versus a mixed venous sample, and whether this difference is influenced by mechanical ventilation. MATERIALS AND METHODS: We analyzed 78 healthy female piglets ventilated with different mechanical power. RESULTS: There was a significant difference in oxygen-derived parameters between samples taken from the central venous and mixed venous blood (S v ¯ $$ \overline{v} $$ O2 = 74.6%, ScvO2 = 83%, p < 0.0001). Conversely, CO2-related parameters were similar, with strong correlation. Ventilation with higher mechanical power and PEEP increased the difference between oxygen saturations, (Δ[ScvO2-S v ¯ $$ \overline{v} $$ O2 ] = 7.22% vs. 10.0% respectively in the low and high MP groups, p = 0.020); carbon dioxide-related parameters remained unchanged (p = 0.344). CONCLUSIONS: The venous oxygen saturation (central or mixed) may be influenced by the effects of mechanical ventilation. Therefore, central venous data should be interpreted with more caution when using higher mechanical power. On the contrary, carbon dioxide-derived parameters are more stable and similar between the two sampling sites, independently of mechanical power or positive end expiratory pressures.


Subject(s)
Carbon Dioxide , Oxygen , Animals , Swine , Female , Oximetry , Blood Gas Analysis , Positive-Pressure Respiration
12.
Eur Respir J ; 63(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38387998

ABSTRACT

This statement outlines a review of the literature and current practice concerning the prevalence, clinical significance, diagnosis and management of dyspnoea in critically ill, mechanically ventilated adult patients. It covers the definition, pathophysiology, epidemiology, short- and middle-term impact, detection and quantification, and prevention and treatment of dyspnoea. It represents a collaboration of the European Respiratory Society and the European Society of Intensive Care Medicine. Dyspnoea ranks among the most distressing experiences that human beings can endure. Approximately 40% of patients undergoing invasive mechanical ventilation in the intensive care unit (ICU) report dyspnoea, with an average intensity of 45 mm on a visual analogue scale from 0 to 100 mm. Although it shares many similarities with pain, dyspnoea can be far worse than pain in that it summons a primal fear response. As such, it merits universal and specific consideration. Dyspnoea must be identified, prevented and relieved in every patient. In the ICU, mechanically ventilated patients are at high risk of experiencing breathing difficulties because of their physiological status and, in some instances, because of mechanical ventilation itself. At the same time, mechanically ventilated patients have barriers to signalling their distress. Addressing this major clinical challenge mandates teaching and training, and involves ICU caregivers and patients. This is even more important because, as opposed to pain which has become a universal healthcare concern, very little attention has been paid to the identification and management of respiratory suffering in mechanically ventilated ICU patients.


Subject(s)
Dyspnea , Respiration, Artificial , Adult , Humans , Respiration, Artificial/adverse effects , Dyspnea/therapy , Dyspnea/etiology , Intensive Care Units , Critical Care , Pain , Critical Illness
14.
Crit Care Explor ; 6(1): e1028, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38213419

ABSTRACT

OBJECTIVES: Lower tidal volume ventilation (targeting 3 mL/kg predicted body weight, PBW) facilitated by extracorporeal carbon dioxide removal (ECCO2R) has been investigated as a potential therapy for acute hypoxemic respiratory failure (AHRF) in the pRotective vEntilation with veno-venouS lung assisT in respiratory failure (REST) trial. We investigated the effect of this strategy on cardiac function, and in particular the right ventricle. DESIGN: Substudy of the REST trial. SETTING: Nine U.K. ICUs. PATIENTS: Patients with AHRF (Pao2/Fio2 < 150 mm Hg [20 kPa]). INTERVENTION: Transthoracic echocardiography and N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements were collected at baseline and postrandomization in patients randomized to ECCO2R or usual care. MEASUREMENTS: The primary outcome measures were a difference in tricuspid annular plane systolic excursion (TAPSE) on postrandomization echocardiogram and difference in NT-proBNP postrandomization. RESULTS: There were 21 patients included in the echocardiography cohort (ECCO2R, n = 13; usual care, n = 8). Patient characteristics were similar in both groups at baseline. Median (interquartile range) tidal volumes were lower in the ECCO2R group compared with the usual care group postrandomization; 3.6 (3.1-4.2) mL/kg PBW versus 5.2 (4.9-5.7) mL/kg PBW, respectively (p = 0.01). There was no difference in the primary outcome measure of mean (sd) TAPSE in the ECCO2R and usual care groups postrandomization; 21.3 (5.4) mm versus 20.1 (3.2) mm, respectively (p = 0.60). There were 75 patients included in the NT-proBNP cohort (ECCO2R, n = 36; usual care, n = 39). Patient characteristics were similar in both groups at baseline. Median (interquartile range [IQR]) tidal volumes were lower in the ECCO2R group than the usual care group postrandomization; 3.8 (3.3-4.2) mL/kg PBW versus 6.7 (5.8-8.1) mL/kg PBW, respectively (p < 0.0001). There was no difference in median (IQR) NT-proBNP postrandomization; 1121 (241-5370) pg/mL versus 1393 (723-4332) pg/mL in the ECCO2R and usual care groups, respectively (p = 0.30). CONCLUSIONS: In patients with AHRF, a reduction in tidal volume facilitated by ECCO2R, did not modify cardiac function.

15.
Respir Res ; 25(1): 37, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238778

ABSTRACT

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Subject(s)
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Humans , Respiration, Artificial/methods , Lung/pathology , Pulmonary Alveoli/pathology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/pathology , Continuous Positive Airway Pressure/methods , Tidal Volume , Ventilator-Induced Lung Injury/prevention & control , Ventilator-Induced Lung Injury/pathology
16.
Intensive Care Med Exp ; 12(1): 6, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38273120

ABSTRACT

INTRODUCTION: Lung weight is an important study endpoint to assess lung edema in porcine experiments on acute respiratory distress syndrome and ventilatory induced lung injury. Evidence on the relationship between lung-body weight relationship is lacking in the literature. The aim of this work is to provide a reference equation between normal lung and body weight in female domestic piglets. MATERIALS AND METHODS: 177 healthy female domestic piglets from previous studies were included in the analysis. Lung weight was assessed either via a CT-scan before any experimental injury or with a scale after autopsy. The animals were randomly divided in a training (n = 141) and a validation population (n = 36). The relation between body weight and lung weight index (lung weight/body weight, g/kg) was described by an exponential function on the training population. The equation was tested on the validation population. A Bland-Altman analysis was performed to compare the lung weight index in the validation population and its theoretical value calculated with the reference equation. RESULTS: A good fit was found between the validation population and the exponential equation extracted from the training population (RMSE = 0.060). The equation to determine lung weight index from body weight was: [Formula: see text] At the Bland and Altman analyses, the mean bias between the real and the expected lung weight index was - 0.26 g/kg (95% CI - 0.96-0.43), upper LOA 3.80 g/kg [95% CI 2.59-5.01], lower LOA - 4.33 g/kg [95% CI = - 5.54-(- 3.12)]. CONCLUSIONS: This exponential function might be a valuable tool to assess lung edema in experiments involving 16-50 kg female domestic piglets. The error that can be made due to the 95% confidence intervals of the formula is smaller than the one made considering the lung to body weight as a linear relationship.

17.
Curr Opin Crit Care ; 30(1): 76-84, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38085878

ABSTRACT

PURPOSE OF REVIEW: Airway pressure release ventilation (APRV) is a modality of ventilation in which high inspiratory continuous positive airway pressure (CPAP) alternates with brief releases. In this review, we will discuss the rationale for APRV as a lung protective strategy and then provide a practical introduction to initiating APRV using the time-controlled adaptive ventilation (TCAV) method. RECENT FINDINGS: APRV using the TCAV method uses an extended inspiratory time and brief expiratory release to first stabilize and then gradually recruit collapsed lung (over hours/days), by progressively 'ratcheting' open a small volume of collapsed tissue with each breath. The brief expiratory release acts as a 'brake' preventing newly recruited units from re-collapsing, reversing the main drivers of ventilator-induced lung injury (VILI). The precise timing of each release is based on analysis of expiratory flow and is set to achieve termination of expiratory flow at 75% of the peak expiratory flow. Optimization of the release time reflects the changes in elastance and, therefore, is personalized (i.e. conforms to individual patient pathophysiology), and adaptive (i.e. responds to changes in elastance over time). SUMMARY: APRV using the TCAV method is a paradigm shift in protective lung ventilation, which primarily aims to stabilize the lung and gradually reopen collapsed tissue to achieve lung homogeneity eliminating the main mechanistic drivers of VILI.


Subject(s)
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Humans , Continuous Positive Airway Pressure/methods , Lung , Respiration, Artificial/adverse effects , Respiration , Ventilator-Induced Lung Injury/prevention & control
18.
ASAIO J ; 70(4): 313-320, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38039550

ABSTRACT

Unfractionated heparin (UFH) is the most used anticoagulant in patients receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO). Its therapeutic levels are monitored using activated partial thromboplastin time ratio (aPTTr) or antifactor Xa (anti-Xa) assay. This was a retrospective, single-center, cohort study where all adult patients with viral etiology respiratory failure requiring VV-ECMO from January 2, 2015 to January 31, 2022 were included. Anticoagulation was monitored using aPTTr (until November 1, 2019) or anti-Xa assay (after November 1, 2019). We compared the accuracy and precision of anticoagulation monitoring tests using time in therapeutic range (TTR) and variance growth rate (VGR), respectively, and their impact on bleeding and thrombotic events (BTEs). A total of 254 patients, 74 in aPTTr and 180 in anti-Xa monitoring groups, were included with a total of 4,992 ECMO-person days. Accuracy was comparable: mean TTR of 47% in aPTTr and 51% in anti-Xa groups ( p = 0.28). Antifactor Xa monitoring group demonstrated improved precision with a lower variance (median VGR 0.21 vs. 1.61 in aPTTr, p < 0.05). Secondary outcome of less heparin prescription changes (adjusted rate ratio [RR] = 1.01, p = 0.01), fewer blood transfusions (adjusted RR = 0.78, p < 0.05), and ECMO circuit changes (adjusted RR = 0.68, p < 0.05) were seen with anti-Xa monitoring.


Subject(s)
Extracorporeal Membrane Oxygenation , Heparin , Adult , Humans , Heparin/therapeutic use , Extracorporeal Membrane Oxygenation/adverse effects , Cohort Studies , Retrospective Studies , Factor Xa Inhibitors/therapeutic use , Anticoagulants/therapeutic use , Partial Thromboplastin Time
19.
Perfusion ; 39(1): 7-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38131204

ABSTRACT

Monitoring the patient receiving veno-venous extracorporeal membrane oxygenation (VV ECMO) is challenging due to the complex physiological interplay between native and membrane lung. Understanding these interactions is essential to understand the utility and limitations of different approaches to respiratory monitoring during ECMO. We present a summary of the underlying physiology of native and membrane lung gas exchange and describe different tools for titrating and monitoring gas exchange during ECMO. However, the most important role of VV ECMO in severe respiratory failure is as a means of avoiding further ergotrauma. Although optimal respiratory management during ECMO has not been defined, over the last decade there have been advances in multimodal respiratory assessment which have the potential to guide care. We describe a combination of imaging, ventilator-derived or invasive lung mechanic assessments as a means to individualise management during ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Extracorporeal Membrane Oxygenation/methods , Respiratory Insufficiency/therapy , Respiratory System
20.
Am J Respir Crit Care Med ; 209(6): 670-682, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38127779

ABSTRACT

Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.


Subject(s)
Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Electric Impedance , Tomography, X-Ray Computed/methods , Lung , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/therapy , Tomography/methods , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...