Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
2.
Nat Hum Behav ; 7(12): 2099-2110, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37904020

ABSTRACT

The extent to which languages share properties reflecting the non-linguistic constraints of the speakers who speak them is key to the debate regarding the relationship between language and cognition. A critical case is spatial communication, where it has been argued that semantic universals should exist, if anywhere. Here, using an experimental paradigm able to separate variation within a language from variation between languages, we tested the use of spatial demonstratives-the most fundamental and frequent spatial terms across languages. In n = 874 speakers across 29 languages, we show that speakers of all tested languages use spatial demonstratives as a function of being able to reach or act on an object being referred to. In some languages, the position of the addressee is also relevant in selecting between demonstrative forms. Commonalities and differences across languages in spatial communication can be understood in terms of universal constraints on action shaping spatial language and cognition.


Subject(s)
Language , Semantics , Humans , Cognition
4.
Br J Psychol ; 114(3): 678-709, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36942850

ABSTRACT

Imitation development was studied in a cross-sectional design involving 174 primary-school children (aged 6-10), focusing on the effect of actions' complexity and error analysis to infer the underlying cognitive processes. Participants had to imitate the model's actions as if they were in front of a mirror ('specularly'). Complexity varied across three levels: movements of a single limb; arm and leg of the same body side; or arm and leg of opposite body sides. While the overall error rate decreased with age, this was not true of all error categories. The rate of 'side' errors (using a limb of the wrong body side) paradoxically increased with age (from 9 years). However, with increasing age, the error rate also became less sensitive to the complexity of the action. This pattern is consistent with the hypothesis that older children have the working memory (WM) resources and the body knowledge necessary to imitate 'anatomically', which leads to additional side errors. Younger children might be paradoxically free from such interference because their WM and/or body knowledge are insufficient for anatomical imitation. Yet, their limited WM resources would prevent them from successfully managing the conflict between spatial codes involved in complex actions (e.g. moving the left arm and the right leg). We also found evidence that action side and content might be stored in separate short-term memory (STM) systems: increasing the number of sides to be encoded only affected side retrieval, but not content retrieval; symmetrically, increasing the content (number of movements) of the action only affected content retrieval, but not side retrieval. In conclusion, results suggest that anatomical imitation might interfere with specular imitation at age 9 and that STM storages for side and content of actions are separate.


Subject(s)
Imitative Behavior , Movement , Humans , Child , Adolescent , Cross-Sectional Studies , Memory, Short-Term
5.
Int J Soc Robot ; 15(3): 517-545, 2023.
Article in English | MEDLINE | ID: mdl-35194482

ABSTRACT

The integration of Ambient Assisted Living (AAL) frameworks with Socially Assistive Robots (SARs) has proven useful for monitoring and assisting older adults in their own home. However, the difficulties associated with long-term deployments in real-world complex environments are still highly under-explored. In this work, we first present the MoveCare system, an unobtrusive platform that, through the integration of a SAR into an AAL framework, aimed to monitor, assist and provide social, cognitive, and physical stimulation in the own houses of elders living alone and at risk of falling into frailty. We then focus on the evaluation and analysis of a long-term pilot campaign of more than 300 weeks of usages. We evaluated the system's acceptability and feasibility through various questionnaires and empirically assessed the impact of the presence of an assistive robot by deploying the system with and without it. Our results provide strong empirical evidence that Socially Assistive Robots integrated with monitoring and stimulation platforms can be successfully used for long-term support to older adults. We describe how the robot's presence significantly incentivised the use of the system, but slightly lowered the system's overall acceptability. Finally, we emphasise that real-world long-term deployment of SARs introduces a significant technical, organisational, and logistical overhead that should not be neglected nor underestimated in the pursuit of long-term robust systems. We hope that the findings and lessons learned from our work can bring value towards future long-term real-world and widespread use of SARs.

6.
Front Robot AI ; 10: 1287417, 2023.
Article in English | MEDLINE | ID: mdl-38263958

ABSTRACT

In current telerobotics and telemanipulator applications, operators must perform a wide variety of tasks, often with a high risk associated with failure. A system designed to generate data-based behavioural estimations using observed operator features could be used to reduce risks in industrial teleoperation. This paper describes a non-invasive bio-mechanical feature capture method for teleoperators used to trial novel human-error rate estimators which, in future work, are intended to improve operational safety by providing behavioural and postural feedback to the operator. Operator monitoring studies were conducted in situ using the MASCOT teleoperation system at UKAEA RACE; the operators were given controlled tasks to complete during observation. Building upon existing works for vehicle-driver intention estimation and robotic surgery operator analysis, we used 3D point-cloud data capture using a commercially available depth camera to estimate an operator's skeletal pose. A total of 14 operators were observed and recorded for a total of approximately 8 h, each completing a baseline task and a task designed to induce detectable but safe collisions. Skeletal pose was estimated, collision statistics were recorded, and questionnaire-based psychological assessments were made, providing a database of qualitative and quantitative data. We then trialled data-driven analysis by using statistical and machine learning regression techniques (SVR) to estimate collision rates. We further perform and present an input variable sensitivity analysis for our selected features.

7.
Front Neurorobot ; 16: 836772, 2022.
Article in English | MEDLINE | ID: mdl-35360828

ABSTRACT

Robots used in research on Embodied AI often need to physically explore the world, to fail in the process, and to develop from such experiences. Most research robots are unfortunately too stiff to safely absorb impacts, too expensive to repair if broken repeatedly, and are never operated without the red kill-switch prominently displayed. The GummiArm Project was intended to be an open-source "soft" robot arm with human-inspired tendon actuation, sufficient dexterity for simple manipulation tasks, and with an eye on enabling easy replication of robotics experiments. The arm offers variable-stiffness and damped actuation, which lowers the potential for damage, and which enables new research opportunities in Embodied AI. The arm structure is printable on hobby-grade 3D printers for ease of manufacture, exploits stretchable composite tendons for robustness to impacts, and has a repair-cycle of minutes when something does break. The material cost of the arm is less than $6000, while the full set of structural parts, the ones most likely to break, can be printed with less than $20 worth of plastic filament. All this promotes a concurrent approach to the design of "brain" and "body," and can help increase productivity and reproducibility in Embodied AI research. In this work we describe the motivation for, and the development and application of, this 6 year project.

8.
Psychol Res ; 86(8): 2495-2511, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33135106

ABSTRACT

In this paper, a novel neuro-robotics model capable of counting real items is introduced. The model allows us to investigate the interaction between embodiment and numerical cognition. This is composed of a deep neural network capable of image processing and sequential tasks performance, and a robotic platform providing the embodiment-the iCub humanoid robot. The network is trained using images from the robot's cameras and proprioceptive signals from its joints. The trained model is able to count a set of items and at the same time points to them. We investigate the influence of pointing on the counting process and compare our results with those from studies with children. Several training approaches are presented in this paper, all of them use pre-training routine allowing the network to gain the ability of pointing and number recitation (from 1 to 10) prior to counting training. The impact of the counted set size and distance to the objects are investigated. The obtained results on counting performance show similarities with those from human studies.


Subject(s)
Robotics , Child , Humans , Robotics/methods , Cognition
9.
IEEE Trans Cybern ; 52(3): 1947-1959, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32639936

ABSTRACT

As artificial systems are starting to be widely deployed in real-world settings, it becomes critical to provide them with the ability to discriminate between different informants and to learn from reliable sources. Moreover, equipping an artificial agent to infer beliefs may improve the collaboration between humans and machines in several ways. In this article, we propose a hybrid cognitive architecture, called Thrive, with the purpose of unifying in a computational model recent discoveries regarding the underlying mechanism involved in trust. The model is based on biological observations that confirmed the role of the midbrain in trial-and-error learning, and on developmental studies that indicate how essential is a theory of mind in order to build empathetic trust. Thrive is build on top of an actor-critic framework that is used to stabilize the weights of two self-organizing maps. A Bayesian network embeds prior knowledge into an intrinsic environment, providing a measure of cost that is used to boostrap learning without an external reward signal. Following a developmental robotics approach, we embodied the model in the iCub humanoid robot and we replicated two psychological experiments. The results are in line with real data, and shed some light on the mechanisms involved in trust-based learning in children and robots.


Subject(s)
Robotics , Theory of Mind , Bayes Theorem , Child , Cognition , Humans , Robotics/methods , Trust
10.
Front Neurorobot ; 15: 626380, 2021.
Article in English | MEDLINE | ID: mdl-34054452

ABSTRACT

Endowing robots with the ability to view the world the way humans do, to understand natural language and to learn novel semantic meanings when they are deployed in the physical world, is a compelling problem. Another significant aspect is linking language to action, in particular, utterances involving abstract words, in artificial agents. In this work, we propose a novel methodology, using a brain-inspired architecture, to model an appropriate mapping of language with the percept and internal motor representation in humanoid robots. This research presents the first robotic instantiation of a complex architecture based on the Baddeley's Working Memory (WM) model. Our proposed method grants a scalable knowledge representation of verbal and non-verbal signals in the cognitive architecture, which supports incremental open-ended learning. Human spoken utterances about the workspace and the task are combined with the internal knowledge map of the robot to achieve task accomplishment goals. We train the robot to understand instructions involving higher-order (abstract) linguistic concepts of developmental complexity, which cannot be directly hooked in the physical world and are not pre-defined in the robot's static self-representation. Our proposed interactive learning method grants flexible run-time acquisition of novel linguistic forms and real-world information, without training the cognitive model anew. Hence, the robot can adapt to new workspaces that include novel objects and task outcomes. We assess the potential of the proposed methodology in verification experiments with a humanoid robot. The obtained results suggest robust capabilities of the model to link language bi-directionally with the physical environment and solve a variety of manipulation tasks, starting with limited knowledge and gradually learning from the run-time interaction with the tutor, past the pre-trained stage.

11.
iScience ; 24(2): 102130, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33659886

ABSTRACT

Robots are likely to become important social actors in our future and so require more human-like ways of assisting us. We state that collaboration between humans and robots is fostered by two cognitive skills: intention reading and trust. An agent possessing these abilities would be able to infer the non-verbal intentions of others and to evaluate how likely they are to achieve their goals, jointly understanding what kind and which degree of collaboration they require. For this reason, we propose a developmental artificial cognitive architecture that integrates unsupervised machine learning and probabilistic models to imbue a humanoid robot with intention reading and trusting capabilities. Our experimental results show that the synergistic implementation of these cognitive skills enable the robot to cooperate in a meaningful way, with the intention reading model allowing a correct goal prediction and with the trust component enhancing the likelihood of a positive outcome for the task.

12.
Front Psychol ; 11: 2011, 2020.
Article in English | MEDLINE | ID: mdl-33101099

ABSTRACT

Recent technological developments in robotics has driven the design and production of different humanoid robots. Several studies have highlighted that the presence of human-like physical features could lead both adults and children to anthropomorphize the robots. In the present study we aimed to compare the attribution of mental states to two humanoid robots, NAO and Robovie, which differed in the degree of anthropomorphism. Children aged 5, 7, and 9 years were required to attribute mental states to the NAO robot, which presents more human-like characteristics compared to the Robovie robot, whose physical features look more mechanical. The results on mental state attribution as a function of children's age and robot type showed that 5-year-olds have a greater tendency to anthropomorphize robots than older children, regardless of the type of robot. Moreover, the findings revealed that, although children aged 7 and 9 years attributed a certain degree of human-like mental features to both robots, they attributed greater mental states to NAO than Robovie compared to younger children. These results generally show that children tend to anthropomorphize humanoid robots that also present some mechanical characteristics, such as Robovie. Nevertheless, age-related differences showed that they should be endowed with physical characteristics closely resembling human ones to increase older children's perception of human likeness. These findings have important implications for the design of robots, which also needs to consider the user's target age, as well as for the generalizability issue of research findings that are commonly associated with the use of specific types of robots.

13.
Front Psychol ; 11: 469, 2020.
Article in English | MEDLINE | ID: mdl-32317998

ABSTRACT

Studying trust in the context of human-robot interaction is of great importance given the increasing relevance and presence of robotic agents in the social sphere, including educational and clinical. We investigated the acquisition, loss, and restoration of trust when preschool and school-age children played with either a human or a humanoid robot in vivo. The relationship between trust and the representation of the quality of attachment relationships, Theory of Mind, and executive function skills was also investigated. Additionally, to outline children's beliefs about the mental competencies of the robot, we further evaluated the attribution of mental states to the interactive agent. In general, no substantial differences were found in children's trust in the play partner as a function of agency (human or robot). Nevertheless, 3-year-olds showed a trend toward trusting the human more than the robot, as opposed to 7-year-olds, who displayed the reverse pattern. These findings align with results showing that, for 3- and 7-year-olds, the cognitive ability to switch was significantly associated with trust restoration in the human and the robot, respectively. Additionally, supporting previous findings, we found a dichotomy between attributions of mental states to the human and robot and children's behavior: while attributing to the robot significantly lower mental states than the human, in the Trusting Game, children behaved in a similar way when they related to the human and the robot. Altogether, the results of this study highlight that similar psychological mechanisms are at play when children are to establish a novel trustful relationship with a human and robot partner. Furthermore, the findings shed light on the interplay - during development - between children's quality of attachment relationships and the development of a Theory of Mind, which act differently on trust dynamics as a function of the children's age as well as the interactive partner's nature (human vs. robot).

15.
PLoS One ; 14(11): e0225028, 2019.
Article in English | MEDLINE | ID: mdl-31747395

ABSTRACT

We explored how people establish cooperation with robotic peers, by giving participants the chance to choose whether to cooperate or not with a more/less selfish robot, as well as a more or less interactive, in a more or less critical environment. We measured the participants' tendency to cooperate with the robot as well as their perception of anthropomorphism, trust and credibility through questionnaires. We found that cooperation in Human-Robot Interaction (HRI) follows the same rule of Human-Human Interaction (HHI), participants rewarded cooperation with cooperation, and punished selfishness with selfishness. We also discovered two specific robotic profiles capable of increasing cooperation, related to the payoff. A mute and non-interactive robot is preferred with a high payoff, while participants preferred a more human-behaving robot in conditions of low payoff. Taken together, these results suggest that proper cooperation in HRI is possible but is related to the complexity of the task.


Subject(s)
Cooperative Behavior , Peer Group , Robotics , Confidence Intervals , Female , Humans , Male , Odds Ratio , Surveys and Questionnaires , Young Adult
16.
Philos Trans R Soc Lond B Biol Sci ; 374(1771): 20180032, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30852993

ABSTRACT

Trust is a critical issue in human-robot interactions: as robotic systems gain complexity, it becomes crucial for them to be able to blend into our society by maximizing their acceptability and reliability. Various studies have examined how trust is attributed by people to robots, but fewer have investigated the opposite scenario, where a robot is the trustor and a human is the trustee. The ability for an agent to evaluate the trustworthiness of its sources of information is particularly useful in joint task situations where people and robots must collaborate to reach shared goals. We propose an artificial cognitive architecture based on the developmental robotics paradigm that can estimate the trustworthiness of its human interactors for the purpose of decision making. This is accomplished using Theory of Mind (ToM), the psychological ability to assign to others beliefs and intentions that can differ from one's owns. Our work is focused on a humanoid robot cognitive architecture that integrates a probabilistic ToM and trust model supported by an episodic memory system. We tested our architecture on an established developmental psychological experiment, achieving the same results obtained by children, thus demonstrating a new method to enhance the quality of human and robot collaborations. This article is part of the theme issue 'From social brains to social robots: applying neurocognitive insights to human-robot interaction'.


Subject(s)
Cooperative Behavior , Robotics , Theory of Mind , Trust , Humans
18.
Dev Sci ; 22(4): e12777, 2019 07.
Article in English | MEDLINE | ID: mdl-30478928

ABSTRACT

Young children sometimes attempt an action on an object, which is inappropriate because of the object size-they make scale errors. Existing theories suggest that scale errors may result from immaturities in children's action planning system, which might be overpowered by increased complexity of object representations or developing teleofunctional bias. We used computational modelling to emulate children's learning to associate objects with actions and to select appropriate actions, given object shape and size. A computational Developmental Deep Model of Action and Naming (DDMAN) was built on the dual-route theory of action selection, in which actions on objects are selected via a direct (nonsemantic or visual) route or an indirect (semantic) route. As in case of children, DDMAN produced scale errors: the number of errors was high at the beginning of training and decreased linearly but did not disappear completely. Inspection of emerging object-action associations revealed that these were coarsely organized by shape, hence leading DDMAN to initially select actions based on shape rather than size. With experience, DDMAN gradually learned to use size in addition to shape when selecting actions. Overall, our simulations demonstrate that children's scale errors are a natural consequence of learning to associate objects with actions.


Subject(s)
Association Learning , Computer Simulation , Decision Making , Judgment , Child , Child, Preschool , Female , Humans , Male , Semantics
19.
Dev Sci ; 22(2): e12741, 2019 03.
Article in English | MEDLINE | ID: mdl-30160064

ABSTRACT

Scale errors occur when young children seriously attempt to perform an action on an object which is impossible due to its size. Children vary substantially in the incidence of scale errors with many factors potentially contributing to these differences, such as age and the type of scale errors. In particular, the evidence for an inverted U-shaped curve of scale errors involving the child's body (i.e., body scale errors), which would point to a developmental stage, is mixed. Here we re-examine how body scale errors vary with age and explore the possibility that these errors would be related to the size and properties of children's lexicon. A large sample of children aged 18-30 months (N = 125) was tested in a scale error elicitation situation. Additionally, parental questionnaires were collected to assess children's receptive and expressive lexicon. Our key findings are that scale errors linearly decrease with age in childhood, and are more likely to be found in early talkers rather than in less advanced ones. This suggests that scale errors do not correspond to a developmental stage, and that one determinant of these errors is the speed of development of the linguistic and conceptual system, as a potential explanation for the individual variability in prevalence.


Subject(s)
Size Perception/physiology , Vocabulary , Age Factors , Child , Child, Preschool , Female , Humans , Infant , Linguistics , Male , Parents , Speech , Surveys and Questionnaires
20.
J Med Internet Res ; 20(9): e264, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30249588

ABSTRACT

BACKGROUND: In Europe, the population of older people is increasing rapidly. Many older people prefer to remain in their homes but living alone could be a risk for their safety. In this context, robotics and other emerging technologies are increasingly proposed as potential solutions to this societal concern. However, one-third of all assistive technologies are abandoned within one year of use because the end users do not accept them. OBJECTIVE: The aim of this study is to investigate the acceptance of the Robot-Era system, which provides robotic services to permit older people to remain in their homes. METHODS: Six robotic services were tested by 35 older users. The experiments were conducted in three different environments: private home, condominium, and outdoor sites. The appearance questionnaire was developed to collect the users' first impressions about the Robot-Era system, whereas the acceptance was evaluated through a questionnaire developed ad hoc for Robot-Era. RESULTS: A total of 45 older users were recruited. The people were grouped in two samples of 35 participants, according to their availability. Participants had a positive impression of Robot-Era robots, as reflected by the mean score of 73.04 (SD 11.80) for DORO's (domestic robot) appearance, 76.85 (SD 12.01) for CORO (condominium robot), and 75.93 (SD 11.67) for ORO (outdoor robot). Men gave ORO's appearance an overall score higher than women (P=.02). Moreover, participants younger than 75 years understood more readily the functionalities of Robot-Era robots compared to older people (P=.007 for DORO, P=.001 for CORO, and P=.046 for ORO). For the ad hoc questionnaire, the mean overall score was higher than 80 out of 100 points for all Robot-Era services. Older persons with a high educational level gave Robot-Era services a higher score than those with a low level of education (shopping: P=.04; garbage: P=.047; reminding: P=.04; indoor walking support: P=.006; outdoor walking support: P=.03). A higher score was given by male older adults for shopping (P=.02), indoor walking support (P=.02), and outdoor walking support (P=.03). CONCLUSIONS: Based on the feedback given by the end users, the Robot-Era system has the potential to be developed as a socially acceptable and believable provider of robotic services to facilitate older people to live independently in their homes.


Subject(s)
Patient Acceptance of Health Care/statistics & numerical data , Robotics/methods , Self-Help Devices/standards , Aged , Aged, 80 and over , Female , Humans , Longevity , Male , Personal Satisfaction , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL