Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Blood Adv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701351

ABSTRACT

Glycoprotein (GP) Ib, the ligand-binding subunit of platelet GPIb-IX complex, interacts with von Willebrand factor (VWF) exposed at the injured vessel wall, initiating platelet adhesion, activation, hemostasis, and thrombus formation. The cytoplasmic tail of GPIb interacts with 14-3-3, regulate ng the VWF-GPIb-elicited signal transduction and VWF binding function of GPIb. However, we unexpectedly found that the GPIb-14-3-3 association, beyond VWF-dependent function, is essential for general platelet activation. We found that the GPIb cytoplasmic tail peptide MPC, a potential GPIb inhibitor, by itself induced platelet aggregation, integrin αIIbß3 activation, granule secretion, and phosphatidylserine (PS) exposure. Conversely, the deletion of the cytoplasmic tail of GPIb in mouse platelets (10aa-/-) decreased platelet aggregation, integrin IIb3 activation, granule secretion, and PS exposure induced by various physiological agonists. Phosphoproteome-based kinase activity profiling revealed significantly upregulated protein kinase C (PKC) activity in MPC-treated platelets. MPC-induced platelet activation was abolished by the pan-PKC inhibitor and PKC deletion. Decreased PKC activity was observed in both resting and agonist-stimulated 10aa-/- platelets. GPIb regulates PKC activity by sequestering 14-3-3 from PKC. In vivo, the deletion of the GPIb cytoplasmic tail impaired mouse hemostasis and thrombus formation and protected against platelet-dependent pulmonary thromboembolism. Therefore, our findings demonstrate an essential role for the GPIb cytoplasmic tail in regulating platelet general activation and thrombus formation beyond the VWF-GPIb axis.

2.
Front Plant Sci ; 15: 1367152, 2024.
Article in English | MEDLINE | ID: mdl-38660448

ABSTRACT

Phenological traits, such as leaf and flowering dates, are proven to be phylogenetically conserved. The relationship between phylogenetic conservation, plant phenology, and climatic factors remains unknown. Here, we assessed phenological features among flowering plants as evidence for phylogenetic conservatism, the tendency for closely related species to share similar ecological and biological attributes. We use spring phenological traits data from 1968-2018 of 65 trees and 49 shrubs in Xi'an (temperate climate) and Guiyang (subtropical climate) to understand plant phenological traits' relationship with phylogeny. Molecular datasets are employed in evolutionary models to test the phylogenetic conservatism in spring phenological characteristics in response to climate-sensitive phenological features. Significant phylogenetic conservation was found in the Xi'an plant's phenological traits, while there was a non-significant conservation in the Guiyang plant species. Phylogenetic generalized least squares (PGLS) models correlate with phenological features significantly in Xi'an while non-significantly in Guiyang. Based on the findings of molecular dating, it was suggested that the Guiyang species split off from their relatives around 46.0 mya during the middle Eocene of the Tertiary Cenozoic Era, while Xi'an species showed a long evolutionary history and diverged from their relatives around 95 mya during the late Cretaceous Mesozoic Era. First leaf dates (FLD) indicative of spring phenology, show that Xi'an adjourned the case later than Guiyang. Unlike FLD, first flower dates (FFD) yield different results as Guiyang flowers appear later than Xi'an's. Our research revealed that various factors, including phylogeny, growth form, and functional features, influenced the diversity of flowering phenology within species in conjunction with local climate circumstances. These results are conducive to understanding evolutionary conservation mechanisms in plant phenology concerning evolutionary processes in different geographical and climate zones.

3.
Cell Mol Gastroenterol Hepatol ; 17(6): 1039-1061, 2024.
Article in English | MEDLINE | ID: mdl-38467191

ABSTRACT

BACKGROUND & AIMS: The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS: Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS: Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS: Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.


Subject(s)
Endothelial Cells , Lipid Metabolism , Liver , Mice, Knockout , Animals , Mice , Liver/metabolism , Liver/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Nucleotide Transport Proteins/metabolism , Nucleotide Transport Proteins/genetics , Animals, Newborn , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
J Agric Food Chem ; 72(11): 5805-5815, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38451212

ABSTRACT

Xylan is the main component of hemicellulose. Complete hydrolysis of xylan requires synergistically acting xylanases, such as ß-d-xylosidases. Salt-tolerant ß-d-xylosidases have significant application benefits, but few reports have explored the critical amino acids affecting the salt tolerance of xylosidases. Herein, the site-directed mutation was used to demonstrate that negative electrostatic potentials generated by 19 acidic residues in the loop regions of the structural surface positively correlated with the improved salt tolerance of GH39 ß-d-xylosidase JB13GH39P28. These mutants showed reduced negative potentials on structural surfaces as well as a 13-43% decrease in stability in 3.0-30.0% (w/v) NaCl. Six key residue sites, D201, D259, D297, D377, D395, and D474, were confirmed to influence both the stability and activity of GH39 ß-d-xylosidase. The activity of the GH39 ß-d-xylosidase was found promoting by SO42- and inhibiting by NO3-. Values of Km and Kcat/Km decreased aggravatedly in 30.0% (w/v) NaCl when mutation operated on residues E179 and D182 in the loop regions of the catalytic domain. Taken together, mutation on acidic residues in loop regions from catalytic and noncatalytic domains may cause the deformation of catalytic pocket and aggregation of protein particles then decrease the stability, binding affinity, and catalytic efficiency of the ß-d-xylosidase.


Subject(s)
Salt Tolerance , Xylosidases , Xylans/metabolism , Sodium Chloride , Xylosidases/chemistry , Substrate Specificity , Hydrogen-Ion Concentration
5.
Mol Ther ; 32(4): 1144-1157, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38310354

ABSTRACT

The potent immunomodulatory function of mesenchymal stem/stromal cells (MSCs) elicited by proinflammatory cytokines IFN-γ and TNF-α (IT) is critical to resolve inflammation and promote tissue repair. However, little is known about how the immunomodulatory capability of MSCs is related to their differentiation competency in the inflammatory microenvironment. In this study, we demonstrate that the adipocyte differentiation and immunomodulatory function of human adipose tissue-derived MSCs (MSC(AD)s) are mutually exclusive. Mitochondrial reactive oxygen species (mtROS), which promote adipocyte differentiation, were decreased in MSC(AD)s due to IT-induced upregulation of superoxide dismutase 2 (SOD2). Furthermore, knockdown of SOD2 led to enhanced adipogenic differentiation but reduced immunosuppression capability of MSC(AD)s. Interestingly, the adipogenic differentiation was associated with increased mitochondrial biogenesis and upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A/PGC-1α) expression. IT inhibited PGC-1α expression and decreased mitochondrial mass but promoted glycolysis in an SOD2-dependent manner. MSC(AD)s lacking SOD2 were compromised in their therapeutic efficacy in DSS-induced colitis in mice. Taken together, these findings indicate that the adipogenic differentiation and immunomodulation of MSC(AD)s may compete for resources in fulfilling the respective biosynthetic needs. Blocking of adipogenic differentiation by mitochondrial antioxidant may represent a novel strategy to enhance the immunosuppressive activity of MSCs in the inflammatory microenvironment.


Subject(s)
Mesenchymal Stem Cells , Superoxide Dismutase , Mice , Humans , Animals , Cell Differentiation , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Adipocytes , Mesenchymal Stem Cells/metabolism
6.
Br J Pharmacol ; 181(12): 1768-1792, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38355288

ABSTRACT

BACKGROUND AND PURPOSE: Panax ginseng is widely applied in the adjuvant treatment of cardiometabolic diseases in clinical practice without clear mechanisms. This study aims to clearly define the efficacy and underlying mechanism of P. ginseng and its active components in protecting against atherosclerosis. EXPERIMENTAL APPROACH: The anti-atherogenic efficacy of total ginseng saponin extract (TGS) and its components was evaluated on Ldlr-/- mice. Gut microbial structure was analysed by 16S rRNA sequencing and PCR. Bile acid profiles were revealed using targeted metabolomics with LC-MS/MS analysis. The contribution of gut microbiota to atherosclerosis was assessed by co-housing experiments. KEY RESULTS: Ginsenoside Rb1, representing protopanaxadiol (PPD)-type saponins, increased intestinal Lactobacillus abundance, resulting in enhanced bile salt hydrolase (BSH) activity to promote intestinal conjugated bile acid hydrolysis and excretion, followed by suppression of enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signal, and thereby increased cholesterol 7α-hydroxylase (CYP7A1) transcriptional expression and facilitated metabolic elimination of cholesterol. Synergistically, protopanaxatriol (PPT)-type saponins, represented by ginsenoside Rg1, protected against atherogenesis-triggered gut leak and metabolic endotoxaemia. Ginsenoside Rg1 directly induced mucin production to nutritionally maintain Akkermansia muciniphila, which reciprocally inhibited gut permeation. Rb1/Rg1 combination, rather than a single compound, can largely mimic the holistic efficacy of TGS in protecting Ldlr-/- mice from atherogenesis. CONCLUSION AND IMPLICATIONS: Our study provides strong evidence supporting TGS and ginsenoside Rb1/Rg1 combinations as effective therapies against atherogenesis, via targeting different signal nodes by different components and may provide some elucidation of the holistic mode of herbal medicines.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Ginsenosides , Homeostasis , Mice, Knockout , Panax , Animals , Ginsenosides/pharmacology , Gastrointestinal Microbiome/drug effects , Homeostasis/drug effects , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Male , Mice , Panax/chemistry , Mice, Inbred C57BL , Bile Acids and Salts/metabolism , Receptors, LDL/metabolism , Fibroblast Growth Factors/metabolism , Amidohydrolases/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism
8.
Indian J Hematol Blood Transfus ; 40(1): 116-121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312175

ABSTRACT

To investigate the risk factors of FVIII inhibitors development in severe hemophilia A (HA) patients who were received on-demand therapy and were infused with plasma cryoprecipitate and multiple FVIII concentrates alternately. We collected clinical information from 43 severe HA children who were treated with plasma cryoprecipitate and multiple FVIII concentrates. The F8 mutation was detected by long-distance PCR for inversion and detected by all exons and their flanking sequencing for other mutations. The inhibitor detection was performed by Nijmegen-modified Bethesda assay. The impact of novel amino substitutions on FVIII protein was predicted by SIFT and PolyPhen-2. The 3D analysis of missense mutations was performed using Swiss-PdbViewer. FVIII inhibitors were detected in nine cases (20.9%). All of the inhibitor positive cases had high risk F8 gene mutations. In most of the positive cases (7/9), inhibitors were developed during the first 10 EDs, which was significantly higher than that in the 10-50 EDs group and 50 EDs group (p = 0.009). Three novel mutations were reported, including c.214G > T (E72X), c.218 T > C (F73S), and c.2690C > G (S840X). For severe HA patients who are treated with multiple products of replacement therapy, it is important to supervise inhibitor during the first 10EDs, especially for those with high risk F8 gene mutations. F8 gene mutation is one of the most important genetic factors for inhibitor development. It is essential to detect F8 gene for all severe HA patients. Three novel mutations were reported to expand the mutation spectrum of the F8 gene.

9.
Blood Adv ; 8(4): 991-1001, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38237079

ABSTRACT

ABSTRACT: Glucosamine (UDP-N-acetyl)-2-epimerase and N-acetylmannosamine (ManNAc) kinase (GNE) is a cytosolic enzyme in de novo sialic acid biosynthesis. Congenital deficiency of GNE causes an autosomal recessive genetic disorder associated with hereditary inclusion body myopathy and macrothrombocytopenia. Here, we report a pediatric patient with severe macrothrombocytopenia carrying 2 novel GNE missense variants, c.1781G>A (p.Cys594Tyr, hereafter, C594Y) and c.2204C>G (p.Pro735Arg, hereafter, P735R). To investigate the biological significance of these variants in vivo, we generated a mouse model carrying the P735R mutation. Mice with homozygous P735R mutations exhibited cerebral hemorrhages as early as embryonic day 11 (E11), which subsequently progressed to large hemorrhages in the brain and spinal cord, and died between E11.5 and E12.5. Defective angiogenesis such as distended vascular sprouts were found in neural tissues and embryonic megakaryocytes were abnormally accumulated in the perineural vascular plexus in mutant mouse embryos. Furthermore, our in vitro experiments indicated that both C594Y and P735R are loss-of-function mutations with respect to de novo sialic acid biosynthesis. Overall, this study reveals a novel role for GNE-mediated de novo sialic acid biosynthesis in mouse embryonic angiogenesis.


Subject(s)
Angiogenesis , N-Acetylneuraminic Acid , Animals , Child , Humans , Mice , Brain , Mutation , Mutation, Missense
10.
Food Chem ; 443: 138556, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38290299

ABSTRACT

Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins due to their high essential amino acid (EAA) index. However, low tuber protein content and limited knowledge about potato storage proteins restrict their widespread utilization in the food industry. Here, we report a proof-of-concept study, using deep learning-based protein design tools, to characterize the biological and chemical characteristics of patatins, the major potato storage proteins. This knowledge was then employed to design multiple cysteines on the patatin surface to build polymers linked by disulfide bonds, which significantly improved viscidity and nutrient of potato flour dough. Our study shows that deep learning-based protein design strategies are efficient to characterize and to create novel proteins for future food sources.


Subject(s)
Deep Learning , Solanum tuberosum , Solanum tuberosum/chemistry , Plant Proteins/metabolism , Plant Tubers/chemistry , Carbohydrates/analysis
11.
Cell Prolif ; 57(4): e13566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37864298

ABSTRACT

Nuclear configuration plays a critical role in the compartmentalization of euchromatin and heterochromatin and the epigenetic regulation of gene expression. Under stimulation by inflammatory cytokines IFN-γ and TNF-α, human mesenchymal stromal cells (hMSCs) acquire a potent immunomodulatory function enabled by drastic induction of various effector genes, with some upregulated several magnitudes. However, whether the transcriptional upregulation of the immunomodulatory genes in hMSCs exposed to inflammatory cytokines is associated with genome-wide nuclear reconfiguration has not been explored. Here, we demonstrate that hMSCs undergo remarkable nuclear reconfiguration characterized by an enlargement of the nucleus, downregulation of LMNB1 and LMNA/C, decondensation of heterochromatin, and derepression of repetitive DNA. Interestingly, promyelocytic leukaemia-nuclear bodies (PML-NBs) were found to mediate the nuclear reconfiguration of hMSCs triggered by the inflammatory cytokines. Significantly, when PML was depleted, the immunomodulatory function of hMSCs conferred by cytokines was compromised, as reflected by the attenuated expression of effector molecules in hMSCs and their failure to block infiltration of immune cells to lipopolysaccharide (LPS)-induced acute lung injury. Our results indicate that the immunomodulatory function of hMSCs conferred by inflammatory cytokines requires PML-mediated chromatin loosening.


Subject(s)
Heterochromatin , Mesenchymal Stem Cells , Humans , Heterochromatin/metabolism , Epigenesis, Genetic , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism , Immunomodulation
12.
World J Clin Cases ; 11(29): 7101-7106, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37946771

ABSTRACT

BACKGROUND: Varicella-zoster virus (VZV) is a common viral infection, but meningitis is a rare complication of VZV infection. The cerebrospinal fluid glucose of viral meningitis is usually within the normal range, which is different from bacteria, fungi, and cancerous meningitis. This paper reports a case of VZV meningitis with hypoglycorrhachia and the relevant literature was reviewed. CASE SUMMARY: We report a case of an immunocompetent 39-year-old male, presenting with severe headache and fevers, without meningeal signs or exanthem, found to have VZV meningitis by the metagenomic next-generation sequencing of cerebrospinal fluid. The cerebrospinal fluid analysis revealed hypoglycorrhachia (cerebrospinal fluid glucose of 2.16) and he was treated successfully with intravenous acyclovir. Our literature review identified only ten cases diagnosed with VZV meningitis with hypoglycorrhachia previously reported to date in the English literature whose cerebrospinal fluid glucose was from 1.6 to 2.7mmol/L, with a ratio of cerebrospinal fluid to serum glucose from 0.30 to 0.49. CONCLUSION: Although rare, the cerebrospinal fluid of patients with VZV meningitis may have hypoglycorrhachia, which broadens the understanding of the disease.

13.
mSphere ; 8(5): e0013423, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37754563

ABSTRACT

The gut microbiome is a potentially important mechanism that links prenatal disaster exposures with increased disease risks. However, whether prenatal disaster exposures are associated with alterations in the infant's gut microbiome remains unknown. We established a birth cohort study named Hurricane as the Origin of Later Alterations in Microbiome (HOLA) after Hurricane Maria struck Puerto Rico in 2017. We enrolled vaginally born Latino term infants aged 2 to 6 months, including n = 29 infants who were exposed in utero to Hurricane Maria in Puerto Rico and n = 34 infants who were conceived at least 5 months after the hurricane as controls. Shotgun metagenomic sequencing was performed on infant stool swabs. Infants exposed in utero to Hurricane Maria had a reduced diversity in their gut microbiome compared to the control infants, which was mainly seen in the exclusively formula-fed group (P = 0.02). Four bacterial species, including Bacteroides vulgatus, Clostridium innocuum, Bifidobacterium pseudocatenulatum, and Clostridium neonatale, were depleted in the exposure group compared to the control group. Compositional differences in the microbial community and metabolic genes between the exposure and control groups were significant, which were driven by the formula feeding group (P = 0.02 for the microbial community and P = 0.008 for the metabolic genes). Metabolic modules involved in carbohydrate metabolism were reduced in the exposure group. Prenatal maternal exposure to Hurricane Maria was associated with a reduced gut commensal and an altered microbial composition and metabolic potential in the offspring's gut. Breastfeeding can adjust the composition of the gut microbiomes of exposed infants. IMPORTANCE Climate change is a serious issue that is affecting human health. With more frequent and intense weather disasters due to climate change, there is an urgent need to evaluate and understand the impacts of prenatal disaster exposures on the offspring. The prenatal stage is a particularly vulnerable stage for disease origination. However, the impact of prenatal weather disaster exposures on the offspring's gut microbiome has not been evaluated. Our HOLA study starts to fill this knowledge gap and provides novel insights into the microbiome as a mechanism that links prenatal disaster exposures with elevated disease risks. Our major finding that reduced microbial diversity and altered metabolic capacity are associated with prenatal hurricane exposures warrants further studies to evaluate the impact of weather disasters on the unborn.


Subject(s)
Cyclonic Storms , Gastrointestinal Microbiome , Pregnancy , Female , Humans , Infant , Cohort Studies , Feces/microbiology , Breast Feeding
14.
Oncogene ; 42(44): 3221-3235, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704784

ABSTRACT

Chemotherapy resistance represents a major cause of therapeutic failure and mortality in cancer patients. Mesenchymal stromal cells (MSCs), an integral component of tumor microenvironment, are known to promote drug resistance. However, the detailed mechanisms remain to be elucidated. Here, we found that MSCs confer breast cancer resistance to doxorubicin by diminishing its intratumoral accumulation. Hyaluronan (HA), a major extracellular matrix (ECM) product of MSCs, was found to mediate the chemoresistant effect. The chemoresistant effect of MSCs was abrogated when hyaluronic acid synthase 2 (HAS2) was depleted or inhibited. Exogenous HA also protected tumor grafts from doxorubicin. Molecular dynamics simulation analysis indicates that HA can bind with doxorubicin, mainly via hydrophobic and hydrogen bonds, and thus reduce its entry into breast cancer cells. This mechanism is distinct from the reported chemoresistant effect of HA via its receptor on cell surface. High HA serum levels were also found to be positively associated with chemoresistance in breast cancer patients. Our findings indicate that the HA-doxorubicin binding dynamics can confer cancer cells chemoresistance. Reducing HA may enhance chemotherapy efficacy.


Subject(s)
Breast Neoplasms , Mesenchymal Stem Cells , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Hyaluronic Acid/metabolism , Doxorubicin/pharmacology , Hyaluronan Synthases/metabolism , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Hyaluronan Receptors/metabolism , Tumor Microenvironment
15.
Biol Direct ; 18(1): 59, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723551

ABSTRACT

BACKGROUND: The thymus is required for T cell development and the formation of the adaptive immunity. Stromal cells, which include thymic epithelial cells (TECs) and mesenchymal stromal cells (MSCs), are essential for thymic function. However, the immunomodulatory function of thymus-derived MSCs (T-MSCs) has not been fully explored. METHODS: MSCs were isolated from mouse thymus and their general characteristics including surface markers and multi-differentiation potential were characterized. The immunomodulatory function of T-MSCs stimulated by IFN-γ and TNF-α was evaluated in vitro and in vivo. Furthermore, the spatial distribution of MSCs in the thymus was interrogated by using tdTomato-flox mice corssed to various MSC lineage Cre recombinase lines. RESULTS: A subset of T-MSCs express Nestin, and are mainly distributed in the thymic medulla region and cortical-medulla junction, but not in the capsule. The Nestin-positive T-MSCs exhibit typical immunophenotypic characteristics and differentiation potential. Additionally, when stimulated with IFN-γ and TNF-α, they can inhibit activated T lymphocytes as efficiently as BM-MSCs, and this function is dependent on the production of nitric oxide (NO). Additionally, the T-MSCs exhibit a remarkable therapeutic efficacy in acute liver injury and inflammatory bowel disease (IBD). CONCLUSIONS: Nestin-positive MSCs are mainly distributed in medulla and cortical-medulla junction in thymus and possess immunosuppressive ability upon stimulation by inflammatory cytokines. The findings have implications in understanding the physiological function of MSCs in thymus.


Subject(s)
Mesenchymal Stem Cells , Nitric Oxide , Animals , Mice , Nestin , Tumor Necrosis Factor-alpha , Adaptive Immunity
16.
Cell Death Discov ; 9(1): 269, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507432

ABSTRACT

Muscle stem cells (MuSCs) have been demonstrated to exert impressive therapeutic efficacy in disease settings through orchestrating inflammatory microenvironments. Nevertheless, the mechanisms underlying the immunoregulatory property of MuSCs remain largely uncharacterized. Here, we showed that interleukin-4-induced-1 (IL4I1), an essential enzyme that catalyzes indole metabolism in humans, was highly expressed in human MuSCs exposed to IFN-γ and TNF-α. Functionally, the MuSCs were found to inhibit the infiltration of neutrophils into sites of inflammation in a IL4I1-dependent manner and thus ameliorate acute lung injury in mice. Mechanistically, the indole metabolites, including indole-3-pyruvic acid (I3P) and indole-3-aldehyde (I3A), produced by IL4I1, acted as ligands to activate aryl hydrocarbon receptor (AHR), leading to augmented expression of TNF-stimulated gene 6 (TSG-6) in inflammatory cytokine-primed MuSCs. Furthermore, I3P administration alone suppressed neutrophil infiltration into damaged lungs. I3P could also reduce the level of reactive oxygen species in neutrophils. Therefore, our study has uncovered a novel mechanism by which MuSCs acquire their immunoregulatory property and may help to develop or optimize MuSC-based therapies for inflammatory diseases.

17.
Stem Cells Transl Med ; 12(9): 576-587, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37487541

ABSTRACT

Wound healing is a complex process and encompasses a number of overlapping phases, during which coordinated inflammatory responses following tissue injury play dominant roles in triggering evolutionarily highly conserved principals governing tissue repair and regeneration. Among all nonimmune cells involved in the process, mesenchymal stem/stromal cells (MSCs) are most intensely investigated and have been shown to play fundamental roles in orchestrating wound healing and regeneration through interaction with the ordered inflammatory processes. Despite recent progress and encouraging results, an informed view of the scope of this evolutionarily conserved biological process requires a clear understanding of the dynamic interplay between MSCs and the immune systems in the process of wound healing. In this review, we outline current insights into the ways in which MSCs sense and modulate inflammation undergoing the process of wound healing, highlighting the central role of neutrophils, macrophages, and T cells during the interaction. We also draw attention to the specific effects of MSC-based therapy on different pathological wound healing. Finally, we discuss how ongoing scientific advances in MSCs could be efficiently translated into clinical strategies, focusing on the current limitations and gaps that remain to be overcome for achieving preferred functional tissue regeneration.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cell Transplantation/methods , Wound Healing/physiology , Mesenchymal Stem Cells/physiology , Macrophages , Inflammation
18.
Front Med (Lausanne) ; 10: 1170520, 2023.
Article in English | MEDLINE | ID: mdl-37293306

ABSTRACT

Background: Hemoporfin-mediated photodynamic therapy (PDT) is an effective treatment for port-wine stains (PWS), and pain is the main adverse effect of this therapy. General anesthesia is commonly used for pain management during PDT, but the effect of general anesthetics on the subsequent treatment efficacy of PDT in PWS has not been reported. Objectives: To assess the use of general anesthesia combined with PDT compared with PDT alone in 207 PWS patients, and to provide further safety and efficacy data on this combined therapy. Methods: Propensity score matching (PSM) was used at a 2:1 ratio to create a general anesthetic group (n = 138) and a highly comparable nonanesthetic group (n = 69). The clinical outcomes were evaluated, and the treatment reactions and adverse effects were recorded after one treatment with PDT. Results: After matching, there was no significant difference in the demographic data of the patients in the two groups (p > 0.05), while the treatment efficacy was significantly higher in the general anesthetic group than in the nonanesthetic group (76.81 vs. 56.52%, p < 0.05). Moreover, logistic regression analysis confirmed that patients receiving general anesthesia showed an association with a good response to PDT (OR = 3.06; 95% CI, 1.57-6.00; p = 0.0011). Purpura lasted longer in the general anesthetic group, but the other treatment reactions and adverse effects were similar in the two groups (p > 0.05). No serious systemic adverse reactions were observed. Conclusion: We recommend this combined therapy, which is associated with painless, as a high efficacy treatment option for PWS patients, especially for patients with a poor response to multiple PDT alone treatments.

19.
Blood ; 142(12): 1071-1081, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37294924

ABSTRACT

Rebalance of coagulation and anticoagulation to achieve a hemostatic effect has recently gained attention as an alternative therapeutic strategy for hemophilia. We engineered a humanized chimeric antibody, SR604, based on a previously published murine antibody, HAPC1573, which selectively blocks the anticoagulant activity of human activated protein C (APC). SR604 effectively blocked the anticoagulation activities of APC in human plasma deficient in various coagulation factors in vitro with affinities ∼60 times greater than that of HAPC1573. SR604 exhibited prophylactic and therapeutic efficacy in the tail-bleeding and knee-injury models of hemophilia A and B mice expressing human APC (humanized hemophilic mice). SR604 did not interfere with the cytoprotection and endothelial barrier function of APC, nor were there obvious toxicity effects in humanized hemophilic mice. Pharmacokinetic study showed a high bioavailability (106%) of subcutaneously injected SR604 in cynomolgus monkeys. These results demonstrate that SR604 is expected to be a safe and effective therapeutic and/or prophylactic agent with a prolonged half-life for patients with congenital factor deficiencies including hemophilia A and B.


Subject(s)
Hemophilia A , Protein C , Humans , Mice , Animals , Protein C/therapeutic use , Hemophilia A/drug therapy , Disease Models, Animal , Blood Coagulation , Anticoagulants/therapeutic use
20.
Eur J Pharmacol ; 945: 175618, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36841284

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome. Non-resolving inflammation, triggered by sustained accumulation of lipids, is an important driving force of NASH. Thus, unveiling metabolic immune regulation could help better understand the pathology and intervention of NASH. In this study, we found the recruitment of neutrophils is an early inflammatory event in NASH mice, following the formation of neutrophil extracellular traps (NETs). NET is an initiating factor which exacerbates inflammatory responses in macrophages. Inhibition of NETs using DNase I significantly alleviated inflammation in NASH mice. We further carried out a metabolomic study to identify possible metabolic triggers of NETs, and linoleic acid (LA) metabolic pathway was the most altered pathway. We re-analyzed published clinical data and validated that LA metabolism was highly correlated with NASH. Consistently, both LA and γ-linolenic acid (GLA) were active in triggering NETs formation by oxidative burst. Furthermore, we identified silybin, a hepatoprotective agent, as a potent NETosis inhibitor, which effectively blocked NETs formation both in vitro and in vivo. Together, this study not only provide new insights into metabolism-immune causal link in NASH progression, but also demonstrate silybin as an important inhibitor of NETs and its therapeutical potential in treating NETosis-related diseases.


Subject(s)
Extracellular Traps , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Extracellular Traps/metabolism , Silybin/pharmacology , Disease Models, Animal , Neutrophils , Fatty Acids, Unsaturated/pharmacology , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...