Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6030, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758692

ABSTRACT

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Proteomics , Virus Replication/genetics , SARS-CoV-2 , Antiviral Agents/metabolism , Host-Pathogen Interactions/genetics
2.
Cell Rep ; 40(3): 111088, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35839775

ABSTRACT

Inhibitors of bromodomain and extraterminal domain (BET) proteins are possible anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here we show that BET proteins should not be inactivated therapeutically because they are critical antiviral factors at the post-entry level. Depletion of BRD3 or BRD4 in cells overexpressing ACE2 exacerbates SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/pharmacology , Interferons , Mice , Nuclear Proteins , Transcription Factors , Viral Proteins
3.
Nat Commun ; 13(1): 2442, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35508460

ABSTRACT

Interferon restricts SARS-CoV-2 replication in cell culture, but only a handful of Interferon Stimulated Genes with antiviral activity against SARS-CoV-2 have been identified. Here, we describe a functional CRISPR/Cas9 screen aiming at identifying SARS-CoV-2 restriction factors. We identify DAXX, a scaffold protein residing in PML nuclear bodies known to limit the replication of DNA viruses and retroviruses, as a potent inhibitor of SARS-CoV-2 and SARS-CoV replication in human cells. Basal expression of DAXX is sufficient to limit the replication of SARS-CoV-2, and DAXX over-expression further restricts infection. DAXX restricts an early, post-entry step of the SARS-CoV-2 life cycle. DAXX-mediated restriction of SARS-CoV-2 is independent of the SUMOylation pathway but dependent on its D/E domain, also necessary for its protein-folding activity. SARS-CoV-2 infection triggers the re-localization of DAXX to cytoplasmic sites and promotes its degradation. Mechanistically, this process is mediated by the viral papain-like protease (PLpro) and the proteasome. Together, these results demonstrate that DAXX restricts SARS-CoV-2, which in turn has evolved a mechanism to counteract its action.


Subject(s)
COVID-19 , SARS-CoV-2 , CRISPR-Cas Systems , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Humans , Interferons/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism
4.
Nat Cell Biol ; 24(1): 24-34, 2022 01.
Article in English | MEDLINE | ID: mdl-35027731

ABSTRACT

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. Here we show that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a therapeutic target for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Epithelial Cells/virology , SARS-CoV-2/metabolism , Transcription Factors/drug effects , Angiotensin-Converting Enzyme 2/drug effects , COVID-19/metabolism , COVID-19/virology , Cell Line , Epithelial Cells/metabolism , Humans , Membrane Glycoproteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Transcription Factors/metabolism , COVID-19 Drug Treatment
5.
bioRxiv ; 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34816261

ABSTRACT

Inhibitors of Bromodomain and Extra-terminal domain (BET) proteins are possible anti-SARS-CoV-2 prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here, we show that BET proteins should not be inactivated therapeutically as they are critical antiviral factors at the post-entry level. Knockouts of BRD3 or BRD4 in cells overexpressing ACE2 exacerbate SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection, and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.

6.
Cell Rep ; 36(5): 109479, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34320401

ABSTRACT

Coronaviruses rely on host membranes for entry, establishment of replication centers, and egress. Compounds targeting cellular membrane biology and lipid biosynthetic pathways have previously shown promise as antivirals and are actively being pursued as treatments for other conditions. Here, we test small molecule inhibitors that target the PI3 kinase VPS34 or fatty acid metabolism for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity. Our studies determine that compounds targeting VPS34 are potent SARS-CoV-2 inhibitors. Mechanistic studies with compounds targeting multiple steps up- and downstream of fatty acid synthase (FASN) identify the importance of triacylglycerol production and protein palmitoylation as requirements for efficient viral RNA synthesis and infectious virus production. Further, FASN knockout results in significantly impaired SARS-CoV-2 replication that can be rescued with fatty acid supplementation. Together, these studies clarify roles for VPS34 and fatty acid metabolism in SARS-CoV-2 replication and identify promising avenues for the development of countermeasures against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Lipid Metabolism/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , Aminopyridines/pharmacology , Animals , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Class III Phosphatidylinositol 3-Kinases/metabolism , Fatty Acid Synthases/drug effects , Fatty Acid Synthases/genetics , Gene Knockout Techniques , Humans , Lipoylation/drug effects , Pyrimidines/pharmacology , RNA, Viral/metabolism , Triglycerides/metabolism , Vero Cells
7.
bioRxiv ; 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-33501440

ABSTRACT

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. We found that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a novel therapeutic target for COVID-19.

8.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33333024

ABSTRACT

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Subject(s)
COVID-19/genetics , Coronavirus Infections/genetics , Coronavirus/physiology , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , A549 Cells , Animals , Biosynthetic Pathways/drug effects , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cholesterol/biosynthesis , Cholesterol/metabolism , Cluster Analysis , Clustered Regularly Interspaced Short Palindromic Repeats , Common Cold/genetics , Common Cold/virology , Coronavirus/classification , Coronavirus Infections/virology , Gene Knockout Techniques , Host-Pathogen Interactions/drug effects , Humans , Mice , Phosphatidylinositols/biosynthesis , Vero Cells , Virus Internalization/drug effects , Virus Replication
9.
Nat Commun ; 11(1): 6277, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293555

ABSTRACT

Compound heterozygous recessive or polygenic diseases could be addressed through gene correction of multiple alleles. However, targeting of multiple alleles using genome editors could lead to mixed genotypes and adverse events that amplify during tissue morphogenesis. Here we demonstrate that Cas9-ribonucleoprotein-based genome editors can correct two distinct mutant alleles within a single human cell precisely. Gene-corrected cells in an induced pluripotent stem cell model of Pompe disease expressed the corrected transcript from both corrected alleles, leading to enzymatic cross-correction of diseased cells. Using a quantitative in silico model for the in vivo delivery of genome editors into the developing human infant liver, we identify progenitor targeting, delivery efficiencies, and suppression of imprecise editing outcomes at the on-target site as key design parameters that control the efficacy of various therapeutic strategies. This work establishes that precise gene editing to correct multiple distinct gene variants could be highly efficacious if designed appropriately.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Therapy/methods , Glycogen Storage Disease Type II/therapy , Alleles , Cells, Cultured , Computer Simulation , Gene Transfer Techniques , Glycogen Storage Disease Type II/genetics , Humans , Induced Pluripotent Stem Cells , Infant , Inheritance Patterns , Liver/cytology , Male , Models, Genetic , Mutation , Primary Cell Culture
10.
Nat Commun ; 11(1): 5041, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028827

ABSTRACT

Following introduction of CRISPR-Cas9 components into a cell, genome editing occurs unabated until degradation of its component nucleic acids and proteins by cellular processes. This uncontrolled reaction can lead to unintended consequences including off-target editing and chromosomal translocations. To address this, we develop a method for light-induced degradation of sgRNA termed CRISPRoff. Here we show that light-induced inactivation of ribonucleoprotein attenuates genome editing within cells and allows for titratable levels of editing efficiency and spatial patterning via selective illumination.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Light , RNA Stability/radiation effects , RNA, Guide, Kinetoplastida/metabolism , CRISPR-Cas Systems/radiation effects , Cell Line, Tumor , DNA Breaks, Double-Stranded , Feasibility Studies , HEK293 Cells , Humans , RNA, Guide, Kinetoplastida/radiation effects , Ribonucleoproteins/metabolism , Translocation, Genetic
11.
bioRxiv ; 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32995787

ABSTRACT

The Coronaviridae are a family of viruses that causes disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors that are common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted parallel genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E) and glycosaminoglycans (for OC43). Additionally, we discovered phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle as well as the potential development of host-directed therapies.

12.
Biophys J ; 118(9): 2086-2102, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31699335

ABSTRACT

Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) generates valuable resources for disease modeling, toxicology, cell therapy, and regenerative medicine. However, the reprogramming process can be stochastic and inefficient, creating many partially reprogrammed intermediates and non-reprogrammed cells in addition to fully reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby disrupting each cell's microenvironment. Here, we develop a micropatterned substrate that allows for dynamic live-cell microscopy of hundreds of cell subpopulations undergoing reprogramming while preserving many of the biophysical and biochemical cues within the cells' microenvironment. On this substrate, we were able to both watch and physically confine cells into discrete islands during the reprogramming of human somatic cells from skin biopsies and blood draws obtained from healthy donors. Using high-content analysis, we identified a combination of eight nuclear characteristics that can be used to generate a computational model to predict the progression of reprogramming and distinguish partially reprogrammed cells from those that are fully reprogrammed. This approach to track reprogramming in situ using micropatterned substrates could aid in biomanufacturing of therapeutically relevant iPSCs and be used to elucidate multiscale cellular changes (cell-cell interactions as well as subcellular changes) that accompany human cell fate transitions.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Cell Differentiation , Humans
13.
Nat Commun ; 10(1): 53, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604771

ABSTRACT

CRISPR/Cas9 guided gene-editing is a potential therapeutic tool, however application to neurodegenerative disease models has been limited. Moreover, conventional mutation correction by gene-editing would only be relevant for the small fraction of neurodegenerative cases that are inherited. Here we introduce a CRISPR/Cas9-based strategy in cell and animal models to edit endogenous amyloid precursor protein (APP) at the extreme C-terminus and reciprocally manipulate the amyloid pathway, attenuating APP-ß-cleavage and Aß production, while up-regulating neuroprotective APP-α-cleavage. APP N-terminus and compensatory APP-homologues remain intact, with no apparent effects on neurophysiology in vitro. Robust APP-editing is seen in human iPSC-derived neurons and mouse brains with no detectable off-target effects. Our strategy likely works by limiting APP and BACE-1 approximation, and we also delineate mechanistic events that abrogates APP/BACE-1 convergence in this setting. Our work offers conceptual proof for a selective APP silencing strategy.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Gene Editing/methods , Genetic Therapy/methods , Neurodegenerative Diseases/therapy , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/cytology , Brain/pathology , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Disease Models, Animal , Female , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , HEK293 Cells , Humans , Induced Pluripotent Stem Cells , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons , Stereotaxic Techniques , Transfection , Treatment Outcome
14.
Curr Opin Biomed Eng ; 7: 83-90, 2018 Sep.
Article in English | MEDLINE | ID: mdl-31086832

ABSTRACT

New gene editing tools like CRISPR-Cas9 enable precision genome engineering within cell lines, primary cells, and model organisms, with some formulations now entering the clinic. "Precision" applies to various aspects of gene editing, and can be tailored for each application. Here we review recent advances in four types of precision in gene editing: 1) increased DNA cutting precision (e.g., on-target:off-target nuclease specificity), 2) increased on-target knock-in of sequence variants and transgenes (e.g., increased homology-directed repair), 3) increased transcriptional control of edited genes, and 4) increased specificity in delivery to a specific cell or tissue. Design of next-generation gene and cell therapies will likely exploit a combination of these advances.

15.
Nat Commun ; 8(1): 1711, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29167458

ABSTRACT

Writing specific DNA sequences into the human genome is challenging with non-viral gene-editing reagents, since most of the edited sequences contain various imprecise insertions or deletions. We developed a modular RNA aptamer-streptavidin strategy, termed S1mplex, to complex CRISPR-Cas9 ribonucleoproteins with a nucleic acid donor template, as well as other biotinylated molecules such as quantum dots. In human cells, tailored S1mplexes increase the ratio of precisely edited to imprecisely edited alleles up to 18-fold higher than standard gene-editing methods, and enrich cell populations containing multiplexed precise edits up to 42-fold. These advances with versatile, preassembled reagents could greatly reduce the time and cost of in vitro or ex vivo gene-editing applications in precision medicine and drug discovery and aid in the development of increased and serial dosing regimens for somatic gene editing in vivo.


Subject(s)
Aptamers, Nucleotide/genetics , CRISPR-Cas Systems , Gene Editing/methods , Oligonucleotides/genetics , Ribonucleoproteins/genetics , Aptamers, Nucleotide/metabolism , Base Sequence , Biotinylation , Cells, Cultured , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Oligonucleotides/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Precision Medicine/methods , Ribonucleoproteins/metabolism , Streptavidin/metabolism
16.
Methods Mol Biol ; 1590: 165-174, 2017.
Article in English | MEDLINE | ID: mdl-28353269

ABSTRACT

Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.


Subject(s)
Pluripotent Stem Cells/physiology , CRISPR-Cas Systems/genetics , Cell Line , Electroporation/methods , Gene Editing/methods , Genetic Engineering/methods , Genome, Human/genetics , Humans , Transcription Activator-Like Effector Nucleases/genetics , Zinc Finger Nucleases/genetics
17.
Stem Cell Reports ; 6(1): 109-20, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26771356

ABSTRACT

CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing.


Subject(s)
CRISPR-Cas Systems , Gene Targeting/methods , Genome, Human/genetics , Human Embryonic Stem Cells/metabolism , Base Sequence , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Gene Targeting/instrumentation , High-Throughput Nucleotide Sequencing/methods , Human Embryonic Stem Cells/cytology , Humans , Molecular Sequence Data , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Reproducibility of Results , Time Factors
18.
Acta Biomater ; 34: 143-158, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26747759

ABSTRACT

Non-viral gene-editing of human cells using the CRISPR-Cas9 system requires optimized delivery of multiple components. Both the Cas9 endonuclease and a single guide RNA, that defines the genomic target, need to be present and co-localized within the nucleus for efficient gene-editing to occur. This work describes a new high-throughput screening platform for the optimization of CRISPR-Cas9 delivery strategies. By exploiting high content image analysis and microcontact printed plates, multi-parametric gene-editing outcome data from hundreds to thousands of isolated cell populations can be screened simultaneously. Employing this platform, we systematically screened four commercially available cationic lipid transfection materials with a range of RNAs encoding the CRISPR-Cas9 system. Analysis of Cas9 expression and editing of a fluorescent mCherry reporter transgene within human embryonic kidney cells was monitored over several days after transfection. Design of experiments analysis enabled rigorous evaluation of delivery materials and RNA concentration conditions. The results of this analysis indicated that the concentration and identity of transfection material have significantly greater effect on gene-editing than ratio or total amount of RNA. Cell subpopulation analysis on microcontact printed plates, further revealed that low cell number and high Cas9 expression, 24h after CRISPR-Cas9 delivery, were strong predictors of gene-editing outcomes. These results suggest design principles for the development of materials and transfection strategies with lipid-based materials. This platform could be applied to rapidly optimize materials for gene-editing in a variety of cell/tissue types in order to advance genomic medicine, regenerative biology and drug discovery. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 is a new gene-editing technology for "genome surgery" that is anticipated to treat genetic diseases. This technology uses multiple components of the Cas9 system to cut out disease-causing mutations in the human genome and precisely suture in therapeutic sequences. Biomaterials based delivery strategies could help transition these technologies to the clinic. The design space for materials based delivery strategies is vast and optimization is essential to ensuring the safety and efficacy of these treatments. Therefore, new methods are required to rapidly and systematically screen gene-editing efficacy in human cells. This work utilizes an innovative platform to generate and screen many formulations of synthetic biomaterials and components of the CRISPR-Cas9 system in parallel. On this platform, we watch genome surgery in action using high content image analysis. These capabilities enabled us to identify formulation parameters for Cas9-material complexes that can optimize gene-editing in a specific human cell type.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Transfer Techniques , High-Throughput Screening Assays/methods , Lipids/chemistry , Flow Cytometry , Fluorescence , Gene Editing , Genes, Reporter , HEK293 Cells , Humans , Multivariate Analysis , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reference Standards , Time Factors , Transcription, Genetic , Transgenes
19.
Proc Natl Acad Sci U S A ; 112(24): 7530-5, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-25964348

ABSTRACT

In the context of Wright's adaptive landscape, genetic epistasis can yield a multipeaked or "rugged" topography. In an unstructured population, a lineage with selective access to multiple peaks is expected to fix rapidly on one, which may not be the highest peak. In a spatially structured population, on the other hand, beneficial mutations take longer to spread. This slowdown allows distant parts of the population to explore the landscape semiindependently. Such a population can simultaneously discover multiple peaks, and the genotype at the highest discovered peak is expected to dominate eventually. Thus, structured populations sacrifice initial speed of adaptation for breadth of search. As in the fable of the tortoise and the hare, the structured population (tortoise) starts relatively slow but eventually surpasses the unstructured population (hare) in average fitness. In contrast, on single-peak landscapes that lack epistasis, all uphill paths converge. Given such "smooth" topography, breadth of search is devalued and a structured population only lags behind an unstructured population in average fitness (ultimately converging). Thus, the tortoise-hare pattern is an indicator of ruggedness. After verifying these predictions in simulated populations where ruggedness is manipulable, we explore average fitness in metapopulations of Escherichia coli. Consistent with a rugged landscape topography, we find a tortoise-hare pattern. Further, we find that structured populations accumulate more mutations, suggesting that distant peaks are higher. This approach can be used to unveil landscape topography in other systems, and we discuss its application for antibiotic resistance, engineering problems, and elements of Wright's shifting balance process.


Subject(s)
Escherichia coli/genetics , Escherichia coli/physiology , Evolution, Molecular , Models, Biological , Adaptation, Biological , Directed Molecular Evolution , Drug Resistance, Bacterial/genetics , Epistasis, Genetic , Genetic Variation , Genome, Bacterial , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...