Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(7): 438, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460534

ABSTRACT

Natural Killer (NK) cells act as important regulators in the development and progression of hematological malignancies and their suppressor activity against Multiple Myeloma (MM) cells has been confirmed in many studies. Significant changes in the distribution of NK cell subsets and dysfunctions of NK cell effector activities were described in MM patients and correlated with disease staging. Thus, restoring or enhancing the functionality of these effectors for the treatment of MM represents a critical need. Neddylation is a post-translational modification that adds a ubiquitin-like molecule, NEDD8, to the substrate protein. One of the outcomes is the activation of the Cullin Ring Ligases (CRLs), a class of ubiquitin-ligases that controls the degradation of about 20% of proteasome-regulated proteins. Overactivation of CRLs has been described in cancer and can lead to tumor growth and progression. Thus, targeting neddylation represents an attractive approach for cancer treatment. Our group has recently described how pharmacologic inhibition of neddylation increases the expression of the NKG2D activating receptor ligands, MICA and MICB, in MM cells, making these cells more susceptible to NK cell degranulation and killing. Here, we extended our investigation to the direct role of neddylation on NK cell effector functions exerted against MM. We observed that inhibition of neddylation enhanced NK cell-mediated degranulation and killing against MM cells and improved Daratumumab/Elotuzumab-mediated response. Mechanistically, inhibition of neddylation increased the expression of Rac1 and RhoA GTPases in NK cells, critical mediators for an efficient degranulation at the immunological synapse of cytotoxic lymphocytes, and augmented the levels of F-actin and perforin polarization in NK cells contacting target cells. Moreover, inhibition of neddylation partially abrogated TGFß-mediated repression of NK cell effector activity. This study describes the role of neddylation on NK cell effector functions and highlights the positive immunomodulatory effects achieved by the inhibition of this pathway in MM.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , NEDD8 Protein/metabolism , Antineoplastic Agents/pharmacology , Proteins , Killer Cells, Natural/metabolism , Ligases
2.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298418

ABSTRACT

Natural Killer (NK) cells are innate cytotoxic lymphoid cells that play a crucial role in cancer immunosurveillance. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed, or infected cells. The secretion of NKG2D ligands (NKG2DLs) through protease-mediated cleavage or in an extracellular vesicle (EV) is a mode to control their cell surface expression and a mechanism used by cancer cells to evade NKG2D-mediated immunosurveillance. EVs are emerging as important players in mediating cell-to-cell communication due to their ability to transfer biological material to acceptor cells. Herein, we investigated the spreading of NKG2DLs of both MIC and ULBP molecules through the EV-mediated cross-dressing on multiple myeloma (MM) cells. We focused our attention on two MICA allelic variants, namely MICA*008 and MICA*019, representing the prototype of short and long MICA alleles, respectively, and on ULBP-1, ULBP-2, and ULBP-3. Our findings demonstrate that both ULBP and MICA ligands can be acquired from tumor cells through EVs enhancing NK cell recognition and killing. Moreover, besides MICA, EVs expressing ULBP-1 but not ULBP-2 and 3 were detected in bone marrow aspirates derived from a cohort of MM patients. Our findings shed light on the role of EV-associated MICA allelic variants and ULBP molecules in the modulation of NKG2D-mediated NK cell immunosurveillance in the tumor microenvironment. Moreover, the EV-mediated transfer of NKG2DLs could suggest novel therapeutic approaches based on the usage of engineered nanoparticles aimed at increasing cancer cell immunogenicity.


Subject(s)
Extracellular Vesicles , Multiple Myeloma , Humans , Multiple Myeloma/metabolism , Ligands , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural , Extracellular Vesicles/metabolism , Cell Death , Bandages , Tumor Microenvironment
3.
Cancer Immunol Immunother ; 72(9): 3097-3110, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37356050

ABSTRACT

Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies.


Subject(s)
Neoplasms , Papillomavirus Infections , Female , Humans , Animals , Mice , Human Papillomavirus Viruses , Cisplatin/pharmacology , Papillomavirus Infections/complications , Apoptosis , Killer Cells, Natural
4.
Biology (Basel) ; 11(4)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35453767

ABSTRACT

A-to-I editing is a post-transcriptional mechanism affecting coding and non-coding dsRNAs, catalyzed by the adenosine deaminases acting on the RNA (ADAR) family of enzymes. A-to-I modifications of endogenous dsRNA (mainly derived from Alu repetitive elements) prevent their recognition by cellular dsRNA sensors, thus avoiding the induction of antiviral signaling and uncontrolled IFN-I production. This process, mediated by ADAR1 activity, ensures the activation of an innate immune response against foreign (non-self) but not self nucleic acids. As a consequence, ADAR1 mutations or its de-regulated activity promote the development of autoimmune diseases and strongly impact cell growth, also leading to cancer. Moreover, the excessive inflammation promoted by Adar1 ablation also impacts T and B cell maturation, as well as the development of dendritic cell subsets, revealing a new role of ADAR1 in the homeostasis of the immune system.

5.
J Extracell Vesicles ; 11(1): e12176, 2022 01.
Article in English | MEDLINE | ID: mdl-34973063

ABSTRACT

Natural killer (NK) cells are innate cytotoxic lymphocytes that play a key role in cancer immunosurveillance thanks to their ability to recognize and kill cancer cells. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed or infected cells. The release of NKG2D ligands (NKG2DLs) in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle (EV) secretion allows cancer cells to evade NKG2D-mediated immunosurveillance. In this work, we investigated the immunomodulatory properties of the NKG2D ligand MICA*008 associated to distinct populations of EVs (i.e., small extracellular vesicles [sEVs] and medium size extracellular vesicles [mEVs]). By using as model a human MICA*008-transfected multiple myeloma (MM) cell line, we found that this ligand is present on both vesicle populations. Interestingly, our findings reveal that NKG2D is specifically involved in the uptake of vesicles expressing its cognate ligand. We provide evidence that MICA*008-expressing sEVs and mEVs are able on one hand to activate NK cells but, following prolonged stimulation induce a sustained NKG2D downmodulation leading to impaired NKG2D-mediated functions. Moreover, our findings show that MICA*008 can be transferred by vesicles to NK cells causing fratricide. Focusing on MM as a clinically and biologically relevant model of tumour-NK cell interactions, we found enrichment of EVs expressing MICA in the bone marrow of a cohort of patients. All together our results suggest that the accumulation of NKG2D ligands associated to vesicles in the tumour microenvironment could favour the suppression of NK cell activity either by NKG2D down-modulation or by fratricide of NK cell dressed with EV-derived NKG2D ligands.


Subject(s)
Extracellular Vesicles/immunology , Histocompatibility Antigens Class I/immunology , Immunologic Surveillance , Killer Cells, Natural/immunology , Multiple Myeloma/immunology , Aged , Aged, 80 and over , Bone Marrow/immunology , Cell Death/immunology , Cell Line , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Immunomodulation , Interferon-gamma/metabolism , Ligands , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily K/immunology , Tumor Escape
6.
Front Immunol ; 12: 532484, 2021.
Article in English | MEDLINE | ID: mdl-33897679

ABSTRACT

Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating ("aggressive") HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the "aggressive" HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Intercellular Signaling Peptides and Proteins/immunology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Cells, Cultured , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Cytotoxicity, Immunologic/genetics , Cytotoxicity, Immunologic/immunology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Gene Expression , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/virology , Ligands , Male , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Reverse Transcriptase Polymerase Chain Reaction
7.
PLoS Pathog ; 16(9): e1008855, 2020 09.
Article in English | MEDLINE | ID: mdl-32986788

ABSTRACT

SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/pathogenicity , Herpesviridae Infections/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Antiviral Agents/pharmacology , Cyclin-Dependent Kinases/metabolism , Cytomegalovirus/genetics , Cytoplasm/metabolism , Cytoplasm/virology , Humans , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation , Virus Replication/drug effects
8.
Front Microbiol ; 11: 661, 2020.
Article in English | MEDLINE | ID: mdl-32351486

ABSTRACT

Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors - e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes - all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.

9.
J Clin Med ; 9(1)2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31948072

ABSTRACT

Transforming growth factor (TGF)-ß is a central immunosuppressive cytokine within tumor microenvironment inhibiting the expansion and function of major cellular components of adaptive and innate immune system. Among them, compelling evidence has demonstrated that TGF-ß is a key regulator of natural killer (NK) cells, innate lymphoid cells (ILCs) with a critical role in immunosurveillance against different kinds of cancer cells. A TGF-ß rich tumor microenvironment blocks NK cell activity at multiple levels. This immunosuppressive factor exerts direct regulatory effects on NK cells including inhibition of cytokine production, alteration of activating/inhibitory receptor expression, and promotion of the conversion into non cytotoxic group I ILC (ILC1). Concomitantly, TGF-ß can render tumor cells less susceptible to NK cell-mediated recognition and lysis. Indeed, accumulating evidence suggest that changes in levels of NKG2D ligands, mainly MICA, as well as an increase of immune checkpoint inhibitors (e.g., PD-L1) and other inhibitory ligands on cancer cells significantly contribute to TGF-ß-mediated suppression of NK cell activity. Here, we will take into consideration two major mechanisms underlying the negative regulation of ILC function by TGF-ß in cancer. First, we will address how TGF-ß impacts the balance of signals governing NK cell activity. Second, we will review recent advances on the role of this cytokine in driving ILC plasticity in cancer. Finally, we will discuss how the development of therapeutic approaches blocking TGF-ß may reverse the suppression of host immune surveillance and improve anti-tumor NK cell response in the clinic.

10.
Int J Mol Sci ; 20(3)2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30708970

ABSTRACT

Natural killer (NK) cells are innate lymphoid cells that play a pivotal role in tumor surveillance. Exosomes are nanovesicles released into the extracellular environment via the endosomal vesicle pathway and represent an important mode of intercellular communication. The ability of anticancer chemotherapy to enhance the immunogenic potential of malignant cells mainly relies on the establishment of the immunogenic cell death (ICD) and the release of damage-associated molecular patterns (DAMPs). Moreover, the activation of the DNA damage response (DDR) and the induction of senescence represent two crucial modalities aimed at promoting the clearance of drug-treated tumor cells by NK cells. Emerging evidence has shown that stress stimuli provoke an increased release of exosome secretion. Remarkably, tumor-derived exosomes (Tex) produced in response to stress carry distinct type of DAMPs that activate innate immune cell populations. Moreover, stress-induced ligands for the activating receptor NKG2D are transported by this class of nanovesicles. Here, we will discuss how Tex interact with NK cells and provide insight into their potential role in response to chemotherapy-induced stress stimuli. The capability of some "danger signals" carried by exosomes that indirectly affect the NK cell activity in the tumor microenvironment will be also addressed.


Subject(s)
Exosomes/immunology , Killer Cells, Natural/metabolism , Neoplasms/immunology , DNA Damage , DNA Repair , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism
11.
J Autoimmun ; 99: 81-97, 2019 05.
Article in English | MEDLINE | ID: mdl-30777378

ABSTRACT

The mechanisms whereby autoreactive T cells escape peripheral tolerance establishing thus autoimmune diseases in humans remain an unresolved question. Here, we demonstrate that autoreactive polyfunctional CD8+ T cells recognizing self-antigens (i.e., vimentin, actin cytoplasmic 1, or non-muscle myosin heavy chain 9 epitopes) with high avidity, counter-regulate Tregs by killing them, in a consistent percentage of rheumatoid arthritis (RA) patients. Indeed, these CD8+ T cells express a phenotype and gene profile of effector (eff) cells and, upon antigen-specific activation, kill Tregs indirectly in an NKG2D-dependent bystander fashion in vitro. This data provides a mechanistic basis for the finding showing that AE-specific (CD107a+) CD8+ T killer cells correlate, directly with the disease activity score, and inversely with the percentage of activated Tregs, in both steady state and follow-up studies in vivo. In addition, multiplex immunofluorescence imaging analyses of inflamed synovial tissues in vivo show that a remarkable number of CD8+ T cells express granzyme-B and selectively contact FOXP3+ Tregs, some of which are in an apoptotic state, validating hence the possibility that CD8+ Teff cells can counteract neighboring Tregs within inflamed tissues, by killing them. Alternatively, the disease activity score of a different subset of patients is correlated with the expansion of a peculiar subpopulation of autoreactive low avidity, partially-activated (pa)CD8+ T cells that, despite they conserve the conventional naïve (N) phenotype, produce high levels of tumor necrosis factor (TNF)-α and exhibit a gene expression signature of a progressive activation state. Tregs directly correlate with the expansion of this autoreactive (low avidity) paCD8+ TN cell subset in vivo, and efficiently control their differentiation rather their proliferation in vitro. Interestingly, autoreactive high avidity CD8+ Teff cells or low avidity paCD8+ TN cells are significantly expanded in RA patients who would become non-responders or patients who would become responders to TNF-α inhibitor therapy, respectively. These data provide evidence of a previously undescribed role of such mechanisms in the progression and therapy of RA.


Subject(s)
Arthritis, Rheumatoid/immunology , Autoimmunity , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Aged, 80 and over , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/metabolism , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , Disease Susceptibility , Female , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Humans , Immunomodulation , Immunophenotyping , Male , Middle Aged , Severity of Illness Index , T-Cell Antigen Receptor Specificity , T-Lymphocytes, Regulatory/metabolism
12.
Front Immunol ; 9: 926, 2018.
Article in English | MEDLINE | ID: mdl-29765374

ABSTRACT

Natural killer (NK) cells are immune innate effectors playing a pivotal role in the immunosurveillance of multiple myeloma (MM) since they are able to directly recognize and kill MM cells. In this regard, among activating receptors expressed by NK cells, NKG2D represents an important receptor for the recognition of MM cells, being its ligands expressed by tumor cells, and being able to trigger NK cell cytotoxicity. The MHC class I-related molecule A (MICA) is one of the NKG2D ligands; it is encoded by highly polymorphic genes and exists as membrane-bound and soluble isoforms. Soluble MICA (sMICA) is overexpressed in the serum of MM patients, and its levels correlate with tumor progression. Interestingly, a methionine (Met) to valine (Val) substitution at position 129 of the α2 heavy chain domain classifies the MICA alleles into strong (MICA-129Met) and weak (MICA-129Val) binders to NKG2D receptor. We addressed whether the genetic polymorphisms in the MICA-129 alleles could affect MICA release during MM progression. The frequencies of Val/Val, Val/Met, and Met/Met MICA-129 genotypes in a cohort of 137 MM patients were 36, 43, and 22%, respectively. Interestingly, patients characterized by a Val/Val genotype exhibited the highest levels of sMICA in the sera. In addition, analysis of the frequencies of MICA-129 genotypes among different MM disease states revealed that Val/Val patients had a significant higher frequency of relapse. Interestingly, NKG2D was downmodulated in NK cells derived from MICA-129Met/Met MM patients. Results obtained by structural modeling analysis suggested that the Met to Val dimorphism could affect the capacity of MICA to form an optimal template for NKG2D recognition. In conclusion, our findings indicate that the MICA-129Val/Val variant is associated with significantly higher levels of sMICA and the progression of MM, strongly suggesting that the usage of soluble MICA as prognostic marker has to be definitely combined with the patient MICA genotype.


Subject(s)
Alleles , Genetic Predisposition to Disease , Histocompatibility Antigens Class I/blood , Histocompatibility Antigens Class I/genetics , Multiple Myeloma/blood , Multiple Myeloma/genetics , Polymorphism, Genetic , Aged , Aged, 80 and over , Amino Acid Substitution , Disease Progression , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genotype , Histocompatibility Antigens Class I/chemistry , Humans , Immunophenotyping , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Middle Aged , Models, Molecular , Molecular Typing , Multiple Myeloma/pathology , NK Cell Lectin-Like Receptor Subfamily K/chemistry , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Protein Binding , Protein Conformation , Structure-Activity Relationship
13.
Front Immunol ; 9: 476, 2018.
Article in English | MEDLINE | ID: mdl-29662484

ABSTRACT

The activating receptor NKG2D is peculiar in its capability to bind to numerous and highly diversified MHC class I-like self-molecules. These ligands are poorly expressed on normal cells but can be induced on damaged, transformed or infected cells, with the final NKG2D ligand expression resulting from multiple levels of regulation. Although redundant molecular mechanisms can converge in the regulation of all NKG2D ligands, different stimuli can induce specific cellular responses, leading to the expression of one or few ligands. A large body of evidence demonstrates that NK cell activation can be triggered by different NKG2D ligands, often expressed on the same cell, suggesting a functional redundancy of these molecules. However, since a number of evasion mechanisms can reduce membrane expression of these molecules both on virus-infected and tumor cells, the co-expression of different ligands and/or the presence of allelic forms of the same ligand guarantee NKG2D activation in various stressful conditions and cell contexts. Noteworthy, NKG2D ligands can differ in their ability to down-modulate NKG2D membrane expression in human NK cells supporting the idea that NKG2D transduces different signals upon binding various ligands. Moreover, whether proteolytically shed and exosome-associated soluble NKG2D ligands share with their membrane-bound counterparts the same ability to induce NKG2D-mediated signaling is still a matter of debate. Here, we will review recent studies on the NKG2D/NKG2D ligand biology to summarize and discuss the redundancy and/or diversity in ligand expression, regulation, and receptor specificity.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Neoplasms/immunology , Virus Diseases/immunology , Animals , Cytotoxicity, Immunologic , Humans , Ligands , NK Cell Lectin-Like Receptor Subfamily K/agonists , NK Cell Lectin-Like Receptor Subfamily K/genetics , Signal Transduction
14.
Front Immunol ; 8: 1583, 2017.
Article in English | MEDLINE | ID: mdl-29209320

ABSTRACT

Mucosal epithelia encounter both physicochemical and biological stress during their life and have evolved several mechanisms to deal with them, including regulation of immune cell functions. Stressed and damaged cells need to be cleared to control local inflammation and trigger tissue healing. Engagement of the activating NKG2D receptor is one of the most direct mechanisms involved in the recognition of stressed cells by the immune system. Indeed, injured cells promptly express NKG2D ligands that in turn mediate the activation of lymphocytes of both innate and adaptive arms of the immune system. This review focuses on different conditions that are able to modulate NKG2D ligand expression on the epithelia. Special attention is given to the mechanisms of immunosurveillance mediated by natural killer cells, which are finely tuned by NKG2D. Different types of stress, including viral and bacterial infections, chronic inflammation, and cigarette smoke exposure, are discussed as paradigmatic conditions for NKG2D ligand modulation, and the implications for tissue homeostasis are discussed.

15.
Cell Rep ; 20(4): 846-853, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28746870

ABSTRACT

Herein, we demonstrate that HCMV miR-UL112-5p targets ERAP1, thereby inhibiting the processing and presentation of the HCMV pp65495-503 peptide to specific CTLs. In addition, we show that the rs17481334 G variant, naturally occurring in the ERAP1 3' UTR, preserves ERAP1 from miR-UL112-5p-mediated degradation. Specifically, HCMV miR-UL112-5p binds the 3' UTR of ERAP1 A variant, but not the 3' UTR of ERAP1 G variant, and, accordingly, ERAP1 expression is reduced both at RNA and protein levels only in human fibroblasts homozygous for the A variant. Consistently, HCMV-infected GG fibroblasts were more efficient in trimming viral antigens and being lysed by HCMV-peptide-specific CTLs. Notably, a significantly decreased HCMV seropositivity was detected among GG individuals suffering from multiple sclerosis, a disease model in which HCMV is negatively associated with adult-onset disorder. Overall, our results identify a resistance mechanism to HCMV miR-UL112-5p-based immune evasion strategy with potential implications for individual susceptibility to infection and other diseases.


Subject(s)
Aminopeptidases/metabolism , Cytomegalovirus/genetics , Genetic Variation/genetics , MicroRNAs/metabolism , Minor Histocompatibility Antigens/metabolism , 3' Untranslated Regions/genetics , Aminopeptidases/genetics , CD8-Positive T-Lymphocytes/metabolism , Cytomegalovirus Infections/enzymology , Cytomegalovirus Infections/genetics , Genotype , Humans , MicroRNAs/genetics , Minor Histocompatibility Antigens/genetics , Multiple Sclerosis/enzymology , Multiple Sclerosis/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Viral/genetics , T-Lymphocytes, Cytotoxic/metabolism
16.
Immunol Lett ; 180: 46-53, 2016 12.
Article in English | MEDLINE | ID: mdl-27816481

ABSTRACT

NK cell cytotoxicity in Chédiak-Higashi syndrome (CHS) is strongly impaired as lytic granules are not released upon NK-target cell contact, contributing to several defects typical of this severe immunodeficiency. Correction of NK cell defects in CHS should improve the outcome of hematopoietic stem-cell transplantation, proposed as therapy. We investigated NK cell functions in a CHS patient before and after cord-blood transplantation, and the ability of in vitro IL-2 treatment to restore them. Before the transplant, the strong defect in NK cell-mediated natural and antibody-dependent cytotoxicity, as well as in IFN-γ production, could be restored up to normal levels by in vitro IL-2 treatment. This cytokine also caused the appearance of smaller lysosomal granules and their orientation towards the NK-target cell contact area, thus suggesting that IL-2 had a more general capacity to restore NK cell effector functions. Moreover after the transplant, although the successful engraftment, NK cell cytotoxicity resulted still partially impaired at one year, almost normal at ten years and, anyhow, fully recovered by in vitro IL-2 treatment. Taken together, our results indicate that IL-2 had a wide capacity to restore NK cell effector functions, being able to reverse the altered cytotoxic activity, lytic granule pattern, and cytokine production observed in the CHS patient.


Subject(s)
Chediak-Higashi Syndrome/drug therapy , Chediak-Higashi Syndrome/immunology , Fetal Blood/cytology , Interleukin-2/therapeutic use , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line , Cytotoxicity, Immunologic/immunology , Fetal Blood/immunology , Hematopoietic Stem Cell Transplantation/methods , Humans , Infant , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male
17.
J Immunol ; 197(10): 4066-4078, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27733551

ABSTRACT

Elimination of virus-infected cells by cytotoxic lymphocytes is triggered by activating receptors, among which NKG2D and DNAM-1/CD226 play an important role. Their ligands, that is, MHC class I-related chain (MIC) A/B and UL16-binding proteins (ULBP)1-6 (NKG2D ligand), Nectin-2/CD112, and poliovirus receptor (PVR)/CD155 (DNAM-1 ligand), are often induced on virus-infected cells, although some viruses, including human CMV (HCMV), can block their expression. In this study, we report that infection of different cell types with laboratory or low-passage HCMV strains upregulated MICA, ULBP3, and PVR, with NKG2D and DNAM-1 playing a role in NK cell-mediated lysis of infected cells. Inhibition of viral DNA replication with phosphonoformic acid did not prevent ligand upregulation, thus indicating that early phases of HCMV infection are involved in ligand increase. Indeed, the major immediate early (IE) proteins IE1 and IE2 stimulated the expression of MICA and PVR, but not ULBP3. IE2 directly activated MICA promoter via its binding to an IE2-responsive element that we identified within the promoter and that is conserved among different alleles of MICA. Both IE proteins were instead required for PVR upregulation via a mechanism independent of IE DNA binding activity. Finally, inhibiting IE protein expression during HCMV infection confirmed their involvement in ligand increase. We also investigated the contribution of the DNA damage response, a pathway activated by HCMV and implicated in ligand regulation. However, silencing of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related protein, and DNA-dependent protein kinase did not influence ligand expression. Overall, these data reveal that MICA and PVR are directly regulated by HCMV IE proteins, and this may be crucial for the onset of an early host antiviral response.


Subject(s)
Gene Expression Regulation , Histocompatibility Antigens Class I/genetics , Immediate-Early Proteins/metabolism , Receptors, Virus/genetics , Trans-Activators/metabolism , Antigens, Differentiation, T-Lymphocyte/genetics , Cell Line , Cytotoxicity, Immunologic , DNA Replication/drug effects , Fibroblasts/drug effects , Fibroblasts/virology , Foscarnet/pharmacology , GPI-Linked Proteins/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , Trans-Activators/pharmacology , Transcriptional Activation , Up-Regulation , Viral Proteins/genetics , Virus Replication/drug effects
18.
Curr Drug Targets ; 17(1): 54-64, 2016.
Article in English | MEDLINE | ID: mdl-26122035

ABSTRACT

Increasing lines of evidence indicate that NKG2D, an activating receptor of natural killer (NK) and CD8(+) T cells, plays an important role in immune responses against HIV-1. Through its ability to recognize a diverse array of ligands (NKG2DLs) induced by cell 'stress' such as viral infection, NKG2D delivers activating and co-stimulatory signals resulting in cytotoxicity and release of cytokines. Therefore, HIV-1 and other viruses have evolved clever mechanisms to counteract NKG2D-dependent immune responses. While, on one hand, the HIV-1 Vpr protein up-regulates NKG2DLs expression by activating the DNA damage response (DDR) pathway, other viral proteins (Nef and Vif) have developed the capacity to reduce NKG2DLs expression levels. In addition, recent evidences suggest that HIV-1-infected CD4(+) T cells may release NKG2DLs, particularly MICA, in soluble form, a phenomenon that has the potential to down-modulate NKG2D on circulating lymphocytes and allow evasion of NKG2D-mediated immune responses. Indeed, despite controversial, lower NKG2D expression was found on both NK and CD8(+) T cells in HIV-1-infected patients. This review discusses recent advances in the understanding of how HIV-1 affects the NKG2D/NKG2DLs system, with a special focus on virus-induced release of soluble NKG2DLs and its functional implications for the immune surveillance of the infected host.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections , HIV-1 , Intracellular Signaling Peptides and Proteins/immunology , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Anti-HIV Agents/pharmacology , Drug Discovery , GPI-Linked Proteins/immunology , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , HIV-1/physiology , Histocompatibility Antigens Class I/immunology , Humans , Immune Evasion/drug effects , Immune Evasion/physiology , Ligands , Paracrine Communication/drug effects , Paracrine Communication/physiology
19.
J Immunol ; 195(2): 736-48, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26071561

ABSTRACT

Genotoxic stress can promote antitumor NK cell responses by upregulating the surface expression of activating ligands on cancer cells. Moreover, a number of studies suggested a role for soluble NK group 2D ligands in the impairment of NK cell tumor recognition and killing. We investigated whether genotoxic stress could promote the release of NK group 2D ligands (MHC class I-related chain [MIC]A and MICB), as well as the molecular mechanisms underlying this event in human multiple myeloma (MM) cells. Our results show that genotoxic agents used in the therapy of MM (i.e., doxorubicin and melphalan) selectively affect the shedding of MIC molecules that are sensitive to proteolytic cleavage, whereas the release of the short MICA*008 allele, which is frequent in the white population, is not perturbed. In addition, we found that a disintegrin and metalloproteinase 10 expression is upregulated upon chemotherapeutic treatment both in patient-derived CD138(+)/CD38(+) plasma cells and in several MM cell lines, and we demonstrate a crucial role for this sheddase in the proteolytic cleavage of MIC by means of silencing and pharmacological inhibition. Interestingly, the drug-induced upregulation of a disintegrin and metalloproteinase 10 on MM cells is associated with a senescent phenotype and requires generation of reactive oxygen species. Moreover, the combined use of chemotherapeutic drugs and metalloproteinase inhibitors enhances NK cell-mediated recognition of MM cells, preserving MIC molecules on the cell surface and suggesting that targeting of metalloproteinases in conjunction with chemotherapy could be exploited for NK cell-based immunotherapeutic approaches, thus contributing to avoid the escape of malignant cells from stress-elicited immune responses.


Subject(s)
ADAM Proteins/immunology , Amyloid Precursor Protein Secretases/immunology , Cytotoxins/pharmacology , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/drug effects , Membrane Proteins/immunology , Plasma Cells/drug effects , ADAM Proteins/genetics , ADAM10 Protein , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Amyloid Precursor Protein Secretases/genetics , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Cell Line, Tumor , Cellular Senescence , DNA Damage , Doxorubicin/pharmacology , Histocompatibility Antigens Class I/genetics , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Matrix Metalloproteinase Inhibitors/pharmacology , Melphalan/pharmacology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Membrane Proteins/genetics , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Multiple Myeloma/pathology , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Plasma Cells/immunology , Plasma Cells/pathology , Primary Cell Culture , Proteolysis , Reactive Oxygen Species/immunology , Signal Transduction , Syndecan-1/genetics , Syndecan-1/immunology
20.
Front Immunol ; 4: 508, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24432022

ABSTRACT

NKG2D and DNAM-1 are two activating receptors, present on the surface of NK cells and other cells of the immune system. Their ligands - MICA, MICB, ULBP1-6 for NKG2D, PVR/CD155 and Nectin-2/CD112 for DNAM-1 - can be constitutively expressed at low levels in some normal cells, but they are more often defined as "stress-induced," since different stimuli can positively regulate their expression. In this review, we describe the molecular mechanisms involved in the up-regulation of NKG2D and DNAM-1 ligands under different physiological and pathological "stress" conditions, including mitosis, viral infections, and cancer. We will focus on the DNA damage response, as recent advances in the field have uncovered its important role as a common signaling pathway in the regulation of both NKG2D and DNAM-1 ligand expression in response to very diverse conditions and stimuli.

SELECTION OF CITATIONS
SEARCH DETAIL