Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
Methods Mol Biol ; 2829: 175-183, 2024.
Article in English | MEDLINE | ID: mdl-38951333

ABSTRACT

Monoclonal antibodies have widespread applications in disease treatment and antigen detection. They are traditionally produced using mammalian cell expression system, which is not able to satisfy the increasing demand of these proteins at large scale. Baculovirus expression vector system (BEVS) is an attractive alternative platform for the production of biologically active monoclonal antibodies. In this chapter, we demonstrate the production of an HIV-1 broadly neutralizing antibody b12 in BEVS. The processes including transfer vector construction, recombinant baculovirus generation, and antibody production and detection are described.


Subject(s)
Baculoviridae , Genetic Vectors , Baculoviridae/genetics , Genetic Vectors/genetics , Animals , Humans , Gene Expression , HIV-1/genetics , HIV-1/immunology , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Enzyme-Linked Immunosorbent Assay , HIV Antibodies/immunology , HIV Antibodies/genetics , Sf9 Cells
2.
Methods Mol Biol ; 2829: 267-270, 2024.
Article in English | MEDLINE | ID: mdl-38951342

ABSTRACT

There are many methods that can be used to determine the infectious titer of your baculovirus stock. The TCID50 method is a simple end-point dilution method that determines the amount of baculovirus virus needed to produce a cytopathic effect or kill 50% of inoculated insect cells. Serial dilutions of baculovirus stock are added to Sf9 cells cultivated in 96-well plates and 3-5 days after infection, cells are monitored for cell death or cytopathic effect. The titer can then be calculated by the Reed-Muench method as described in this method.


Subject(s)
Baculoviridae , Baculoviridae/genetics , Animals , Sf9 Cells , Cytopathogenic Effect, Viral , Spodoptera/virology , Viral Load/methods , Cell Line
3.
Int J Nanomedicine ; 19: 7049-7069, 2024.
Article in English | MEDLINE | ID: mdl-39011388

ABSTRACT

Surface Plasmon Resonance (SPR) technology, as a powerful analytical tool, plays a crucial role in the preparation, performance evaluation, and biomedical applications of nanoparticles due to its real-time, label-free, and highly sensitive detection capabilities. In the nanoparticle preparation process, SPR technology can monitor synthesis reactions and surface modifications in real-time, optimizing preparation techniques and conditions. SPR enables precise measurement of interactions between nanoparticles and biomolecules, including binding affinities and kinetic parameters, thereby assessing nanoparticle performance. In biomedical applications, SPR technology is extensively used in the study of drug delivery systems, biomarker detection for disease diagnosis, and nanoparticle-biomolecule interactions. This paper reviews the latest advancements in SPR technology for nanoparticle preparation, performance evaluation, and biomedical applications, discussing its advantages and challenges in biomedical applications, and forecasting future development directions.


Subject(s)
Nanoparticles , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Nanoparticles/chemistry , Humans , Drug Delivery Systems/methods
4.
BMC Cancer ; 24(1): 850, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020297

ABSTRACT

BACKGROUND: This study was designed to evaluate the effect of progesterone receptor (PR) status on the prognosis of advanced estrogen receptor (ER)-high human epidermal growth factor receptor 2 (HER2)-negative breast cancer patients receiving CDK4/6 inhibitor combined with endocrine as first-line therapy. METHODS: Advanced ER-high HER2-negative breast cancer patients who were admitted to Harbin Medical University Cancer Hospital and received cyclin-dependent kinase (CDK)4/6 inhibitor combined with endocrine as first-line therapy were included for analysis. Patients were divided into PR-high group (11-100%), PR-low group (1-10%), and PR-negative group (< 1%) according to the expression of PR. Chi-square test was used to analyze the correlation of variables between groups. COX regression analysis were used to analyze the risk factors of survival. Kaplan-Meier survival curve was used to analyze the differences of progression-free survival (PFS) and overall survival (OS) between groups. RESULTS: Among the 152 patients, 72 were PR-high, 32 were PR-low, and 48 were PR-negative. Compared with PR-negative group, the proportions of disease-free survival (DFS) ≥ 5 years and Ki-67 index ≤ 30% in PR-low group and PR-high group were significant higher. PR-negative patients were more likely to occur first-line progression of disease within 24 months (POD24) than PR-high(P = 0.026). Univariate and multivariate analysis showed that PR-negative and first-line POD24 occurrence were risk factors for survival. Survival curve analysis showed that compared with PR-high group, the PFS and OS were significantly lower in PR-negative group (P = 0.001, P = 0.036, respectively). Patients with first-line POD24 had shorter OS in the overall population as well as in subgroups stratified by PR status. CONCLUSIONS: PR-negative and first-line POD24 occurrence were risk factors of advanced ER-high HER2-negative breast cancer patients receiving CDK4/6 inhibitor combined with endocrine as first-line therapy. PR-negative patients had shortest PFS and OS. Regardless of PR status, first-line POD24 occurrence predicted shorter OS.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Receptor, ErbB-2 , Receptors, Estrogen , Receptors, Progesterone , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism , Receptors, Progesterone/metabolism , Middle Aged , Receptors, Estrogen/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Prognosis , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Protein Kinase Inhibitors/therapeutic use , Kaplan-Meier Estimate , Retrospective Studies , Antineoplastic Agents, Hormonal/therapeutic use
5.
Cryobiology ; 116: 104915, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38830567

ABSTRACT

A cryopreservation protocol has been developed for embryogenic cultures (ECs) of Castanea mollissima, an important economic species of the Castanea genus in China. We achieved 100 % regrowth when ECs were treated with Plant Vitrification Solution 2 (PVS2) for 30, 60 and 90 min on ice. Optimal PVS2 treatment for cryopreservation was determined to be 30 min on ice based on the highest biomass regrowth after thawing. Fluorescein diacetate (FDA) staining could rapidly and reliably determine post-thaw cell viability and its use facilitated the optimization of the cryopreservation protocols. Although the proliferation rate of the re-established ECs remained largely unchanged compared to non-cryopreserved ECs, the capacity of the re-established ECs to differentiate (on two media) into somatic embryos nearly doubled to approximately 2200-2300 globular somatic embryos per 1 g of re-established ECs. Based on cell cluster size analysis, this enhanced growth is primarily attributed to the presence of significantly greater cell clusters with a diameter of 100-200 µm, which have the highest level of differentiation ability. In order to understand the increased embryogenic potential following cryopreservation, we analyzed the expression of key genes related to somatic embryogenesis. Genes CmWUS and CmABP1 were downregulated while CmLEC1, CmAGL15, CmGRF2, and CmFUS3 were upregulated in re-established ECs when compared to non-cryopreserved ECs.

6.
PeerJ ; 12: e17556, 2024.
Article in English | MEDLINE | ID: mdl-38860211

ABSTRACT

Hematoma expansion (HE) is an important risk factor for death or poor prognosis in patients with hypertensive intracerebral hemorrhage (HICH). Accurately predicting the risk of HE in patients with HICH is of great clinical significance for timely intervention and improving patient prognosis. Many imaging signs reported in literatures showed the important clinical value for predicting HE. In recent years, the development of radiomics and artificial intelligence has provided new methods for HE prediction with high accuracy. Therefore, this article reviews the latest research progress in CT imaging, radiomics, and artificial intelligence of HE, in order to help identify high-risk patients for HE in clinical practice.


Subject(s)
Intracranial Hemorrhage, Hypertensive , Tomography, X-Ray Computed , Humans , Intracranial Hemorrhage, Hypertensive/diagnostic imaging , Tomography, X-Ray Computed/methods , Artificial Intelligence , Prognosis , Hematoma/diagnostic imaging , Hematoma/pathology
7.
Bioact Mater ; 39: 443-455, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38873087

ABSTRACT

The biomedical application of self-healing materials in wet or (under)water environments is quite challenging because the insulation and dissociation effects of water molecules significantly reduce the reconstruction of material-interface interactions. Rapid closure with uniform tension of high-tension wounds is often difficult, leading to further deterioration and scarring. Herein, a new type of thermosetting water-resistant self-healing bioelastomer (WRSHE) was designed by synergistically incorporating a stable polyglycerol sebacate (PGS) covalent crosslinking network and triple hybrid dynamic networks consisting of reversible disulfide metathesis (SS), and dimethylglyoxime urethane (Dou) and hydrogen bonds. And a resveratrol-loaded WRSHE (Res@WRSHE) was developed by a swelling, absorption, and crosslinked network locking strategy. WRSHEs exhibited skin-like mechanical properties in terms of nonlinear modulus behavior, biomimetic softness, high stretchability, and good elasticity, and they also achieved ultrafast and highly efficient self-healing in various liquid environments. For wound-healing applications of high-tension full-thickness skin defects, the convenient surface assembly by self-healing of WRSHEs provides uniform contraction stress to facilitate tight closure. Moreover, Res@WRSHEs gradually release resveratrol, which helps inflammatory response reduction, promotes blood vessel regeneration, and accelerates wound repair.

9.
Skin Res Technol ; 30(5): e13702, 2024 May.
Article in English | MEDLINE | ID: mdl-38743386

ABSTRACT

BACKGROUND: Many studies have indicated that negative emotions and personality traits are related to psoriasis, though few have provided causal evidence. METHODS: Our analysis utilized 15 genome-wide association study datasets to identify instrumental variables associated with negative emotions, personality traits and psoriasis vulgaris. Two-sample Mendelian randomization was conducted to identify the causal associations of negative emotions and personality traits with psoriasis vulgaris. To mitigate bias from multiple tests, we adjusted p-values using the Benjamini-Hochberg method. RESULTS: Our study revealed causal links between negative emotions and psoriasis vulgaris, including depressed affect, worry too long, feeling hurt, guilty feelings, mood swings, unenthusiasm, miserableness, fed-up feelings. However, there was no significant evidence of a causal relationship between feeling lonely and psoriasis vulgaris. Additionally, personality traits including neuroticism and openness to experience were found to have causal effects on psoriasis vulgaris. However, no significant evidence supported a causal relationship between agreeableness, conscientiousness, and extraversion with psoriasis vulgaris. CONCLUSION: Our findings suggest that experiencing negative emotions including depressed affect, worrying excessively, feeling hurt, guilty feelings, mood swings, lack of enthusiasm, miserableness and fed-up feelings may pose risks for psoriasis vulgaris. Additionally, neuroticism is associated with a risk of psoriasis vulgaris. Conversely, the openness trait may serve a protective role against psoriasis vulgaris.


Subject(s)
Emotions , Genome-Wide Association Study , Mendelian Randomization Analysis , Personality , Psoriasis , Humans , Psoriasis/psychology , Psoriasis/genetics , Polymorphism, Single Nucleotide
10.
Photodermatol Photoimmunol Photomed ; 40(3): e12972, 2024 May.
Article in English | MEDLINE | ID: mdl-38752300

ABSTRACT

BACKGROUND: In previous studies, the 308-nm light-emitting diode (LED) has been proven safe and effective for treating vitiligo. However, direct comparisons between the 308-nm LED and 308-nm excimer lamp (308-nm MEL) for the treatment of vitiligo are lacking. OBJECTIVE: To compare the efficacy of the 308-nm LED and 308-nm MEL for treating nonsegmental stable vitiligo. PATIENTS AND METHODS: This randomized controlled trial was conducted between January 2018 and August 2023. Enrolled patients were randomly assigned to either the 308-nm LED or the 308-nm MEL groups, both receiving 16 treatment sessions. Adverse events that occurred during the treatment were documented. RESULTS: In total, 269 stable vitiligo patches from 174 patients completed the study. A total of 131 lesions were included in the 308-nm LED group, and 138 lesions were included in the 308-nm MEL group. After 16 treatment sessions, 38.17% of the vitiligo patches in the 308-nm LED group achieved repigmentation of at least 50% versus 38.41% in the 308-nm MEL group. The two devices exhibited similar results in terms of efficacy for a repigmentation of at least 50% (p = .968). The incidence of adverse effects with the two phototherapy devices was comparable (p = .522). CONCLUSIONS: Treatment of vitiligo with the 308-nm LED had a similar efficacy rate to the 308-nm MEL, and the incidence of adverse effects was comparable between the two devices.


Subject(s)
Vitiligo , Humans , Vitiligo/radiotherapy , Vitiligo/therapy , Female , Male , Adult , Middle Aged , Adolescent , Lasers, Excimer/therapeutic use , Lasers, Excimer/adverse effects , Young Adult , Child
11.
Heliyon ; 10(7): e28677, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586344

ABSTRACT

Duchenne muscular dystrophy (DMD MIM#310200) is a degenerative muscle disease caused by mutations in the dystrophin gene located on Xp21.2. The clinical features encompass muscle weakness and markedly elevated serum creatine kinase levels. An 8-year-old Chinese boy was diagnosed with Duchenne muscular dystrophy (DMD). Whole exome gene sequencing was conducted and the Sanger method was used to validate sequencing. A deletion (c.5021del) in exon 35 of the dystrophin gene was identified, which was predicted to generate a frameshift mutation and create an early termination codon (p.Leu1674CysfsTer47). It has a pathogenic effect against dystrophin in the muscle cell membrane of the patient. As such, prednisone treatment at a dose of 0.75 mg/kg.d was administered. After one month, a notable reduction in fall frequency was observed. Our new finding will expand the pathogenic mutation spectrum causing DMD.

12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 500-505, 2024 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-38565519

ABSTRACT

piRNA is a class of small non-coding RNA which specifically binds with PIWI protein. It is mainly expressed in germ cells and involved in the regulation of spermatogenesis. The role of piRNA pathway in the regulation of spermatogenesis mainly includes inhibition of transposons, induction of mRNA translation or degradation, and mediation of degradation of Miwi ubiquitination in late-stage sperm cells. With the detection of piRNA in seminal plasma, more attention has been attracted to whether piRNA can be used as a non-invasive molecular biomarker for the evaluation of spermatogenesis. This paper has reviewed recent studies on the mechanism of piRNA pathways mediating spermatogenesis and potential roles of piRNA disorders in the diagnosis and treatment of male infertility.


Subject(s)
Infertility, Male , Piwi-Interacting RNA , Humans , Male , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Semen/metabolism , Spermatogenesis/genetics , Infertility, Male/diagnosis , Infertility, Male/genetics , Biomarkers
13.
FASEB J ; 38(7): e23594, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38573451

ABSTRACT

A high prevalence of osteoarthritis (OA) has been observed among individuals living at high altitudes, and hypobaric hypoxia (HH) can cause bone mass and strength deterioration. However, the effect of HH on OA remains unclear. In this study, we aimed to explore the impact of HH on OA and its potential mechanisms. A rat knee OA model was established by surgery, and the rats were bred in an HH chamber simulating a high-altitude environment. Micro-computed tomography (Micro-CT), histological analysis, and RNA sequencing were performed to evaluate the effects of HH on OA in vivo. A hypoxic co-culture model of osteoclasts and osteoblasts was also established to determine their effects on chondrogenesis in vitro. Cartilage degeneration significantly worsened in the HH-OA group compared to that in the normoxia-OA (N-OA) group, 4 weeks after surgery. Micro-CT analysis revealed more deteriorated bone mass in the HH-OA group than in the N-OA group. Decreased hypoxia levels in the cartilage and enhanced hypoxia levels in the subchondral bone were observed in the HH-OA group. Furthermore, chondrocytes cultured in a conditioned medium from the hypoxic co-culture model showed decreased anabolism and extracellular matrix compared to those in the normoxic model. RNA sequencing analysis of the subchondral bone indicated that the glycolytic signaling pathway was highly activated in the HH-OA group. HH-related OA progression was associated with alterations in the oxygen environment and bone remodeling in the subchondral zone, which provided new insights into the pathogenesis of OA.


Subject(s)
Osteoarthritis , Oxygen , Animals , Rats , X-Ray Microtomography , Hypoxia , Osteoarthritis/etiology , Bone Remodeling
14.
Mater Today Bio ; 26: 101051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633867

ABSTRACT

Commonly, articular osteochondral tissue exists significant differences in physiological architecture, mechanical function, and biological microenvironment. However, the development of biomimetic scaffolds incorporating upper cartilage, middle tidemark-like, and lower subchondral bone layers for precise articular osteochondral repair remains elusive. This study proposed here a novel strategy to construct the trilayered biomimetic hydrogel scaffolds with dual-differential microenvironment of both mechanical and biological factors. The cartilage-specific microenvironment was achieved through the grafting of kartogenin (KGN) into gelatin via p-hydroxyphenylpropionic acid (HPA)-based enzyme crosslinking reaction as the upper cartilage layer. The bone-specific microenvironment was achieved through the grafting of atorvastatin (AT) into gelatin via dual-crosslinked network of both HP-based enzyme crosslinking and glycidyl methacrylate (GMA)-based photo-crosslinking reactions as the lower subchondral bone layer. The introduction of tidemark-like middle layer is conducive to the formation of well-defined cartilage-bone integrated architecture. The in vitro experiments demonstrated the significant mechanical difference of three layers, successful grafting of drugs, good cytocompatibility and tissue-specific induced function. The results of in vivo experiments also confirmed the mechanical difference of the trilayered bionic scaffold and the ability of inducing osteogenesis and chondrogenesis. Furthermore, the articular osteochondral defects were successfully repaired using the trilayered biomimetic hydrogel scaffolds by the activation of endogenous recovery, which offers a promising alternative for future clinical treatment.

15.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564364

ABSTRACT

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Subject(s)
Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-18 , Macrophage Activation , Signal Transduction , Liver/metabolism , Ascorbic Acid , Sepsis/complications , Sepsis/drug therapy , Lipopolysaccharides/pharmacology
16.
Cell Signal ; 119: 111171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604345

ABSTRACT

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS: qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1ß, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS: Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION: Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.


Subject(s)
Adaptor Proteins, Signal Transducing , MicroRNAs , NF-kappa B , Psoriasis , Wnt-5a Protein , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , Down-Regulation , HaCaT Cells , Imiquimod , MicroRNAs/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Psoriasis/genetics , Psoriasis/pathology , Psoriasis/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Up-Regulation , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics
17.
Phytochemistry ; 221: 114048, 2024 May.
Article in English | MEDLINE | ID: mdl-38447597

ABSTRACT

A continued phytochemical investigation guided by 1H NMR and LC-MS data on the ethanol extract from the peeled stems of Syringa pinnatifolia Hemsl. led to the isolation of 16 undescribed dimeric eremophilane sesquiterpenoids, namely syringenes R-Z (1-9) and A1-G1 (10-16). These structures were elucidated by extensive analysis of spectroscopic data, including HRESIMS, NMR, quantum-mechanics-based computational analysis of NMR chemical shifts, and single-crystal X-ray diffraction analyses, and a concise rule for determination of relative configuration of angular methyl was proposed. The results of the cardioprotective assay demonstrated that 3 exhibits a protective effect against hypoxia-induced injuries in H9c2 cells. This effect was observed at a concentration of 10 µM, with a protective rate of 28.43 ± 11.80%.


Subject(s)
Sesquiterpenes , Syringa , Syringa/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Structure
18.
Adv Mater ; 36(25): e2401304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469918

ABSTRACT

The dense extracellular matrix (ECM) in solid tumors, contributed by cancer-associated fibroblasts (CAFs), hinders penetration of drugs and diminishes their therapeutic outcomes. A sequential treatment strategy of remodeling the ECM via a CAF modifier (dasatinib, DAS) is proposed to promote penetration of an immunogenic cell death (ICD) inducer (epirubicin, Epi) via apoptotic vesicles, ultimately enhancing the treatment efficacy against breast cancer. Dendritic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA)-based nanomedicines (poly[OEGMA-Dendron(G2)-Gly-Phe-Leu-Gly-DAS] (P-DAS) and poly[OEGMA-Dendron(G2)-hydrazone-Epi] (P-Epi)) are developed for sequential delivery of DAS and Epi, respectively. P-DAS reprograms CAFs to reduce collagen by downregulating collagen anabolism and energy metabolism, thereby reducing the ECM deposition. The regulated ECM can enhance tumor penetration of P-Epi to strengthen its ICD effect, leading to an amplified antitumor immune response. In breast cancer-bearing mice, this approach alleviates the ECM barrier, resulting in reduced tumor burden and increased cytotoxic T lymphocyte infiltration, and more encouragingly, synergizes effectively with anti-programmed cell death 1 (PD-1) therapy, significantly inhibiting tumor growth and preventing lung metastasis. Furthermore, systemic toxicity is barely detectable after sequential treatment with P-DAS and P-Epi. This approach opens a new avenue for treating desmoplastic tumors by metabolically targeting CAFs to overcome the ECM barrier.


Subject(s)
Antineoplastic Agents , Nanomedicine , Animals , Nanomedicine/methods , Mice , Humans , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dendrimers/chemistry , Female , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Drug Carriers/chemistry
20.
IEEE Trans Biomed Eng ; 71(7): 2080-2094, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38306265

ABSTRACT

OBJECTIVE: The Rapid Serial Visual Presentation (RSVP) paradigm facilitates target identification in a rapid picture stream, which is applied extensively in military target surveillance and police monitoring. Most researchers concentrate on the single target RSVP-BCI whereas the study of dual-target is scarcely conducted, limiting RSVP application considerably. METHODS: This paper proposed a novel classification model named Common Representation Extraction-Targeted Stacked Convolutional Autoencoder (CRE-TSCAE) to detect two targets with one nontarget in RSVP tasks. CRE generated a common representation for each target class to reduce variability from different trials of the same class and distinguish the difference between two targets better. TSCAE aimed to control uncertainty in the training process while requiring less target training data. The model learned a compact and discriminative feature through the training from several learning tasks so as to distinguish each class effectively. RESULTS: It was validated on the World Robot Contest 2021 and 2022 ERP datasets. Experimental results showed that CRE-TSCAE outperformed the state-of-the-art RSVP decoding algorithms and the Average ACC was 71.25%, improving 6.5% at least over the rest. CONCLUSION: It demonstrated that CRE-TSCAE showed a strong ability to extract discriminative latent features in detecting the differences among two targets with nontarget, which guaranteed increased classification accuracy. SIGNIFICANCE: CRE-TSCAE provided an innovative and effective classification model for dual-target RSVP-BCI tasks and some insights into the neurophysiological distinction between different targets.


Subject(s)
Algorithms , Brain-Computer Interfaces , Electroencephalography , Humans , Electroencephalography/methods , Signal Processing, Computer-Assisted , Evoked Potentials/physiology
SELECTION OF CITATIONS
SEARCH DETAIL