Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
iScience ; 27(9): 110526, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39224514

ABSTRACT

Ferroptosis is implicated in several diseases, including iron overload-induced osteoarthritis (IOOA), which is marked by oxidative stress, iron imbalance, and lipid peroxidation. Given rosiglitazone's (RSG) ability to inhibit lipid peroxidation and ferroptosis, this study aims to assess its therapeutic potential for treating IOOA. Our in vitro results show that RSG targets acyl-CoA synthetase long-chain family member 4 to mitigate impairments induced by interleukin-1 beta and ferric ammonium citrate, including cell apoptosis, senescence, inflammatory responses, extracellular matrix degradation, and ferroptosis. RSG reduced intracellular iron content, alleviated oxidative stress and lipid peroxidation, mitigated damage to membrane-bound organelles, and enhanced glucose transport. Additionally, pre-treatment with RSG imparted anti-ferroptotic properties to chondrocytes. In vivo, RSG alleviated cartilage degradation, inflammatory responses, and ferroptosis in mice with IOOA. In conclusion, RSG exhibits chondroprotective and anti-ferroptotic effects by suppressing lipid peroxidation and restoring iron homeostasis, highlighting its potential for treating IOOA.

2.
Gene ; 930: 148853, 2024 Dec 20.
Article in English | MEDLINE | ID: mdl-39147111

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a maternal inherited disorder, primarily due to mitochondrial DNA (mtDNA) mutations. This investigation aimed to assess the pathogenicity of m.3635G>A alteration known to confer susceptibility to LHON. The disruption of electrostatic interactions among S110 of the MT-ND1 and the side chain of E4, along with the carbonyl backbone of M1 in the NDUFA1, was observed in complex I of cybrids with m.3635G>A. This disturbance affected the complex I assembly activity by changing the mitochondrial respiratory chain composition and function. In addition, the affected cybrids exhibited notable deficiencies in complex I activities, including impaired mitochondrial respiration and depolarization of its membrane potential. Apoptosis was also stimulated in the mutant group, as witnessed by the secretion of cytochrome c and activation of PARP, caspase 3, 7, and 9 compared to the control. Furthermore, the mutant group exhibited decreased levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PINK1/Parkin-dependent mitophagy. Overall, the current study has confirmed the crucial involvement of the alteration of the m.3635G>A gene in the development of LHON. These findings contribute to a deeper comprehension of the pathophysiological mechanisms underlying LHON, providing a fundamental basis for further research.


Subject(s)
Apoptosis , Mitochondria , Mitophagy , NADH Dehydrogenase , Optic Atrophy, Hereditary, Leber , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Optic Atrophy, Hereditary, Leber/pathology , Humans , Mitophagy/genetics , Apoptosis/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Mutation , DNA, Mitochondrial/genetics , Membrane Potential, Mitochondrial/genetics , Protein Kinases
3.
J Biol Chem ; : 107728, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39214298

ABSTRACT

Leber's Hereditary Optic Neuropathy (LHON) is a rare, maternally inherited eye disease, predominantly due to the degeneration of retinal ganglion cells (RGCs). It is associated with a mitochondrial DNA (mtDNA) point mutation. Our previous study identified that the m.15927G>A homoplasmic mutation damaged the highly conserved basepairing (28C-42G) in anticodon stem of tRNAThr, caused deficient t6A modification and significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr, and led to mitochondrial dysfunction. Meanwhile, mechanisms underlying mtDNA mutations regulate intracellular signaling related to the mitochondrial and cellular integrity are less explored. Here, we manifested that defective nucleotide modification induced by the m.15927G>A mutation interfered with the expression of nuclear genes involved in cytoplasmic proteins essential for oxidative phosphorylation system (OXPHOS), thereby impacting the assemble and integrity of OXPHOS complexes. As a result of these mitochondrial dysfunctions, there was an imbalance in mitochondrial dynamics, particularly distinguished by an increased occurrence of mitochondrial fission. Excessive fission compromised the autophagy process, including initiation phase, formation and maturation of autophagosome. Both Parkin-mediated mitophagy and receptor-dependent mitophagy were significantly impaired in cybrids haboring the m.15927G>A mutation. These changes facilitated intrinsic apoptosis, as indicated by increased cytochrome c release and elevated levels of apoptosis-associated proteins (e.g., BAK, BAX, cleaved caspase 9, cleaved caspase 3, and cleaved PARP) in the mutant cybrids. This study demonstrates that the m.15927G>A mutation contributes to LHON by dysregulating OXPHOS biogenesis, aberrant quality control, increased autophagy, inhibited mitophagy, and abnormal apoptosis.

4.
Pak J Med Sci ; 40(6): 1105-1110, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952537

ABSTRACT

Objective: To assess the effect of Traditional Chinese Medicine (TCM) nutrition treatment (Bushenhuoxue nutritional decoction) in overweight patients with polycystic ovary syndrome (PCOS). Methods: Retrospective analysis of 96 overweight patients with PCOS who received treatment in our hospital from October 2020 to June 2022 was done. Among them, 46 patients received routine drug treatment and daily dietary intervention (control group), while 50 patients received additional TCM nutrition support in addition to routine treatment (observation group). Glucose and lipid metabolism indicators and hormone levels were compared between the two groups before and after the treatment. Ovulation rate, pregnancy rate, and adverse reactions were compared between both groups one year after the treatment. Results: After treatment, the improvement of glucose and lipid metabolism indicators and hormone levels in the observation group was significantly better than in the control group (P<0.05). After treatment, the TCM syndrome scores of the two groups were lower than that before treatment (P < 0.001), and the TCM syndrome scores of the observation group was lower than that of the control group (P < 0.001).Ovulation and pregnancy rates were significantly higher in the observation group compared to the control group at 1-year follow up (P<0.05), and the incidence of adverse reactions in the observation group was significantly lower than that in the control group (P<0.05). Conclusions: Combined with conventional drug treatment, TCM nutrition treatment can significantly improve glucose and lipid metabolism, hormone levels, and TCM syndrome of overweight PCOS patients, increase the ovulation and pregnancy rates, and reduce potential adverse reactions.

5.
Front Neurol ; 15: 1422409, 2024.
Article in English | MEDLINE | ID: mdl-39036635

ABSTRACT

Background: Previous studies suggest a link between diet-derived circulating antioxidants and epilepsy, but the causal relationship is unclear. This study aims to investigate the causal effect of these antioxidants on epilepsy. Methods: To assess the causal link between dietary antioxidants and epilepsy risk, we conducted a two-sample Mendelian randomization (MR) analysis. This involved examining antioxidants such as zinc, selenium, α- and γ-tocopherol, vitamin A (retinol), vitamin C (ascorbate), and vitamin E (α-tocopherol). We utilized instrumental variables (IVs) which were genetic variations highly associated with these commonly used antioxidants. Exposure data were sourced from a comprehensive genome-wide association study (GWAS). We aggregated data from the International League Against Epilepsy (ILAE) Consortium sample, which included various types of epilepsy, as an outcome variable. Finally, we applied the inverse variance weighting method and conducted sensitivity analyses for further validation. Results: Based on the primary MR estimates and subsequent sensitivity analyses, the inverse variance weighting (IVW) method revealed that a genetically predicted increase in zinc per standard deviation was positively associated with three types of epilepsy. This includes all types of epilepsy (OR = 1.06, 95% CI: 1.02-1.11, p = 0.008), generalized epilepsy (OR = 1.13, 95% CI: 1.01-1.25, p = 0.030), and focal epilepsy (documented hippocampal sclerosis) (OR = 1.01, 95% CI: 1.00-1.02, p = 0.025). However, there is no evidence indicating that other antioxidants obtained from the diet affect the increase of epilepsy either positively or negatively. Conclusion: Our research indicates that the risk of developing epilepsy may be directly linked to the genetic prediction of zinc, whereas no such association was found for other antioxidants.

6.
Front Nutr ; 11: 1389338, 2024.
Article in English | MEDLINE | ID: mdl-39050137

ABSTRACT

Background: The association between dietary zinc intake and epilepsy remains unclear. This study aimed to investigate the relationship between zinc intake from the diet and epilepsy, employing Mendelian randomization (MR) to explore potential causal links between zinc and epilepsy. Methods: The cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2018. Among the 4,434 participants included, 1.5% (67/4,434) reported having epilepsy. Restricted cubic spline models and logistic regression models were employed to examine the relationships between dietary zinc intakes and epilepsy. Subsequently, a 2-sample Mendelian randomization (MR) analysis was conducted using the inverse variance weighted (IVW) approach as the primary analysis. Results: In the restricted cubic spline (RCS) analysis, the relationship between dietary zinc consumption and epilepsy displayed an L-shaped curve (nonlinear, p = 0.049). After multivariate adjustments, the adjusted odds ratios for epilepsy in T2 (5.0-11.0 mg/day) and T3 (≥11.0 mg/day) were 0.49 (95% confidence interval [CI]: 0.26-0.92, p = 0.026) and 0.60 (95% CI: 0.31-1.17, p = 0.132), respectively, compared to the lowest dietary zinc consumption tertile (T1, ≤5.0 mg/day). The IVW method indicated that genetically predicted zinc intake per standard-deviation increase was inversely associated with three types of epilepsy, including all types of epilepsy (OR = 1.06, 95% CI: 1.02-1.11, p = 0.008), generalized epilepsy (OR = 1.13, 95% CI: 1.01-1.25, p = 0.030), and focal epilepsy (documented hippocampal sclerosis) (OR = 1.01, 95% CI: 1.00-1.02, p = 0.025). Conclusion: Our findings suggest that a daily zinc intake ranging from 5.0 to 11.0 mg is associated with the lowest risk of epilepsy. Furthermore, Mendelian randomization (MR) studies provide additional support for the existence of a causal relationship between zinc and epilepsy.

7.
Regen Biomater ; 11: rbae049, 2024.
Article in English | MEDLINE | ID: mdl-38919844

ABSTRACT

Microbial infections of bones, particularly after joint replacement surgery, are a common occurrence in clinical settings and often lead to osteomyelitis (OM). Unfortunately, current treatment approaches for OM are not satisfactory. To address this issue, this study focuses on the development and evaluation of an injectable magnesium oxide (MgO) nanoparticle (NP)-coordinated phosphocreatine-grafted chitosan hydrogel (CMPMg-VCM) loaded with varying amounts of vancomycin (VCM) for the treatment of OM. The results demonstrate that the loading of VCM does not affect the formation of the injectable hydrogel, and the MgO-incorporated hydrogel exhibits anti-swelling properties. The release of VCM from the hydrogel effectively kills S.aureus bacteria, with CMPMg-VCM (50) showing the highest antibacterial activity even after prolonged immersion in PBS solution for 12 days. Importantly, all the hydrogels are non-toxic to MC3T3-E1 cells and promote osteogenic differentiation through the early secretion of alkaline phosphatase and calcium nodule formation. Furthermore, in vivo experiments using a rat OM model reveal that the CMPMg-VCM hydrogel effectively kills and inhibits bacterial growth, while also protecting the infected bone from osteolysis. These beneficial properties are attributed to the burst release of VCM, which disrupts bacterial biofilm, as well as the release of Mg ions and hydroxyl by the degradation of MgO NPs, which inhibits bacterial growth and prevents osteolysis. Overall, the CMPMg-VCM hydrogel exhibits promising potential for the treatment of microbial bone infections.

8.
Stem Cell Res Ther ; 15(1): 187, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937829

ABSTRACT

Due to the advanced studies on stem cells in developmental biology, the roles of stem cells in the body and their phenotypes in related diseases have not been covered clearly. Meanwhile, with the intensive research on the mechanisms of stem cells in regulating various diseases, stem cell therapy is increasingly being attention because of its effectiveness and safety. As one of the most widely used stem cell in stem cell therapies, hematopoietic stem cell transplantation shows huge advantage in treatment of leukemia and other blood-malignant diseases. Besides, due to the effect of anti-inflammatory and immunomodulatory, mesenchymal stem cells could be a potential therapeutic strategy for variety infectious diseases. In this review, we summarized the effects of Staphylococcus aureus (S. aureus) and its components on different types of adult stem cells and their downstream signaling pathways. Also, we reviewed the roles of different kinds of stem cells in various disease models caused by S. aureus, providing new insights for applying stem cell therapy to treat infectious diseases.


Subject(s)
Staphylococcus aureus , Humans , Animals , Inflammation/therapy , Staphylococcal Infections/therapy , Signal Transduction , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism
9.
Biomater Adv ; 161: 213893, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796955

ABSTRACT

Angiogenesis plays a crucial role in bone regeneration. Hypoxia is a driving force of angiogenesis at the initial stage of tissue repair. The hypoxic microenvironment could activate the hypoxia-inducible factor (HIF)-1α signaling pathway in cells, thereby enhancing the proliferation, migration and pro-angiogenic functions of stem cells. However, long-term chronic hypoxia could inhibit osteogenic differentiation and even lead to apoptosis. Therefore, shutdown of the HIF-1α signaling pathway and providing oxygen at later stage probably facilitate osteogenic differentiation and bone regeneration. Herein, an oxygen tension regulating hydrogel that sequentially activate and deactivate the HIF-1α signaling pathway were prepared in this study. Its effect and mechanism on stem cell differentiation were investigated both in vitro and in vivo. We proposed a gelatin-based hydrogel capable of sequentially delivering a hypoxic inducer (copper ions) and oxygen generator (calcium peroxide). The copper ions released from the hydrogels significantly enhanced cell viability and VEGF secretion of BMSCs via upregulating HIF-1α expression and facilitating its translocation into the nucleus. Additionally, calcium peroxide promoted alkaline phosphatase activity, osteopontin secretion, and calcium deposition through the activation of ERK1/2. Both Cu2+ and calcium peroxide demonstrated osteogenic promotion individually, while their synergistic effect within the hydrogels led to a superior osteogenic effect by potentially activating the HIF-1α and ERK1/2 signaling pathways.


Subject(s)
Bone Regeneration , Hydrogels , Hypoxia-Inducible Factor 1, alpha Subunit , MAP Kinase Signaling System , Mesenchymal Stem Cells , Neovascularization, Physiologic , Osteogenesis , Oxygen , Hydrogels/pharmacology , Hydrogels/chemistry , Osteogenesis/drug effects , Osteogenesis/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Bone Regeneration/drug effects , Animals , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Oxygen/metabolism , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Gelatin , Cell Survival/drug effects , Signal Transduction/drug effects , Peroxides
10.
J Thorac Dis ; 16(4): 2528-2538, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738248

ABSTRACT

Background: The mortality rate of coronary artery disease ranks first in developed countries, and coronary revascularization therapy is an important cornerstone of its treatment. The postoperative pulmonary complications (PPCs) in patients receiving one-stop hybrid coronary revascularization (HCR) aggravate the dysfunction of multiple organs such as the heart and lungs, therefore increasing mortality. However, the risk factors are still unclear. The objective of this study was to explore the risk factors of PPCs after HCR surgery. Methods: In this study, the perioperative data of 311 patients undergoing HCR surgery were reviewed. All patients were divided into two groups according to whether the PPCs occurred. The baseline information and surgery-related indicators in preoperative laboratory examination, intraoperative fluid management, and anesthesia management were compared between the two groups. Results: Advanced age [odds ratio (OR): 1.065, 95% confidence interval (CI): 1.030-1.101, P<0.001], high body mass index (BMI; OR: 1.113, 95% CI: 1.011-1.225, P=0.02), history of percutaneous coronary intervention (PCI) surgery (OR: 2.831, 95% CI: 1.388-5.775, P=0.004), one-lung volume ventilation (OR: 3.804, 95% CI: 1.923-7.526, P<0.001), inhalation of high concentration oxygen (OR: 3.666, 95% CI: 1.719-7.815, P=0.001), the application of positive end-expiratory pressure (PEEP; OR: 2.567, 95% CI: 1.338-4.926, P=0.005), and long one-lung ventilation time (OR: 1.015, 95% CI: 1.006-1.023, P=0.001) may be risk factors for postoperative PPCs in patients undergoing one-stop coronary revascularization surgery. Using the above seven factors to jointly predict the risk of PPCs in patients undergoing one-stop coronary revascularization surgery, the receiver operating characteristic (ROC) curve showed an area under the curve (AUC) =0.873, 95% CI: 0.835-0.911, sensitivity: 84.81%, and specificity: 75.82%; the predictive model was shown to be effective. Conclusions: Patients undergoing HCR surgery with advanced age, high BMI, a history of PCI surgery, one-lung volume ventilation, inhalation of high concentration oxygen, use of PEEP, and prolonged single lung ventilation are more prone to PPCs.

11.
Food Res Int ; 187: 114359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763643

ABSTRACT

Chinese Xiaokeng green tea (XKGT) possesses elegant and fascinating aroma characteristics, but its key odorants are still unknown. In this study, 124 volatile compounds in the XKGT infusion were identified by headspace-solid phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and solvent extraction-solid phase extraction (SE-SPE) combined with gas chromatography-mass spectrometry (GC-MS). Comparing these three pretreatments, we found HS-SPME was more efficient for headspace compounds while SE-SPE was more efficient for volatiles with higher boiling points. Furthermore, SBSE showed more sensitive to capture ketones then was effective to the application of pretreatment of aroma analysis in green tea. The aroma intensities (AIs) were further identified by gas chromatography-olfactometry (GC-O). According to the AI and relative odor activity value (rOAV), 27 compounds were identified as aroma-active compounds. Quantitative descriptive analysis (QDA) showed that the characteristic aroma attributes of XKGT were chestnut-like, corn-like, fresh, and so on. The results of network analysis showed that (E, Z)-2,6-nonadienal, nonanal, octanal and nerolidol were responsible for the fresh aroma. Similarly, dimethyl sulfide, (E, E)-2,4-heptadienal, (E)-2-octenal and ß-cyclocitral contributed to the corn-like aroma. Furthermore, indole was responsible for the chestnut-like and soybean-like aroma. This study contributes to a better understanding of the molecular mechanism of the aroma characteristics of XKGT.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Olfactometry , Solid Phase Microextraction , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods , Humans , Camellia sinensis/chemistry , Solid Phase Extraction/methods
12.
Int J Biol Macromol ; 269(Pt 1): 131914, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703527

ABSTRACT

The healing of critical-sized bone defects is a major challenge in the field of bone tissue engineering. Gelatin-related hydrogels have emerged as a potential solution due to their desirable properties. However, their limited osteogenic, mechanical, and reactive oxygen species (ROS)-scavenging capabilities have hindered their clinical application. To overcome this issue, we developed a biofunctional gelatin-Mxene nanocomposite hydrogel. Firstly, we prepared two-dimensional (2D) Ti3C2 MXene nanosheets using a layer delamination method. Secondly, these nanosheets were incorporated into a transglutaminase (TG) enzyme-containing gallic acid-imbedded gelatin (GGA) pre-gel solution to create an injectable GGA-MXene (GM) nanocomposite hydrogel. The GM hydrogels exhibited superior compressive strength (44-75.6 kPa) and modulus (24-44.5 kPa) compared to the GGA hydrogels. Additionally, the GM hydrogel demonstrated the ability to scavenge reactive oxygen species (OH- and DPPH radicals), protecting MC3T3-E1 cells from oxidative stress. GM hydrogels were non-toxic to MC3T3-E1 cells, increased alkaline phosphatase secretion, calcium nodule formation, and upregulated osteogenic gene expressions (ALP, OCN, and RUNX2). The GM400 hydrogel was implanted in critical-sized calvarial defects in rats. Remarkably, it exhibited significant potential for promoting new bone formation. These findings indicated that GM hydrogel could be a viable candidate for future clinical applications in the treatment of critical-sized bone defects.


Subject(s)
Gelatin , Hydrogels , Nanocomposites , Osteogenesis , Reactive Oxygen Species , Skull , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Gelatin/chemistry , Nanocomposites/chemistry , Osteogenesis/drug effects , Reactive Oxygen Species/metabolism , Skull/drug effects , Skull/pathology , Mice , Rats , Bone Regeneration/drug effects , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Titanium/chemistry , Cell Line , Tissue Engineering/methods
13.
Insights Imaging ; 15(1): 103, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589638

ABSTRACT

OBJECTIVES: To determine the mandibular anatomical structures by observing cone-beam computed tomography (CBCT) from multiple angles. MATERIALS AND METHODS: This retrospective study analyzed 1593 consecutive CBCT images. Ultimately, 95 CBCTs met the inclusion criteria. The mandibular, inferior lingual, and bony canals at the tooth apex were studied by multi-angle observation CBCT. Descriptive statistics were used for statistical analysis. RESULTS: It is beneficial to further observe the anastomosis of the mandibular, lingual, and mandibular canals when the course of the mandibular lingual canal is observed on CBCT cross-section. The frequency of the inferior lingual canal anastomosis with the mandibular canal was 43.2% (95% confidence interval (CI) 33, 53.3) in the sample. The mental foramen was located below the long axis of the tooth in a few samples, with an occurrence rate of 29.5% (95% CI 20.1, 38.8). The occurrence rate of various types of the bony canal at the apex of the tooth in canines, first premolars, second premolars, first molars, and second molars under the root apex was recorded through the multi-angle observation of the dental volume reformat (DVR) and three-dimensional (3D) levels in CBCT. CONCLUSION: This study demonstrates the utility of CBCT imaging in examining mandibular anatomy from multiple angles, providing valuable insights into anatomical variations, and enhancing our understanding of mandibular structures. This research emphasizes the crucial role of meticulous CBCT examination in precisely identifying and understanding key anatomical structures, ultimately reducing the risk of surgical complications. CRITICAL RELEVANCE STATEMENT: By examining cone-beam computed tomography scans from various perspectives, it is possible to determine the precise position of anatomical structures within the jaw. This allows for a more accurate assessment, reducing the risk of harm to these structures during treatment. KEY POINTS: • It is crucial to utilize image data effectively to enhance the comprehension of human anatomy. • We captured detailed images of the mandible from different angles and orientations utilizing cone-beam computed tomography (CBCT). • This study provides essential anatomical information for procedural planning to ensure optimal outcomes and patient safety.

14.
J Neuroinflammation ; 21(1): 111, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685040

ABSTRACT

BACKGROUND: It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge. MAIN BODY: Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1ß (IL-1ß) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells. CONCLUSION: Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.


Subject(s)
Becaplermin , Diet, High-Fat , Endothelial Cells , Hippocampus , Metabolic Syndrome , Microglia , Transcytosis , Animals , Mice , Becaplermin/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Transcytosis/physiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Microglia/metabolism , Microglia/pathology , Diet, High-Fat/adverse effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice, Transgenic , Mice, Inbred C57BL , Mice, Knockout , Male , Bone and Bones/metabolism , Bone and Bones/pathology
15.
Front Pharmacol ; 15: 1366852, 2024.
Article in English | MEDLINE | ID: mdl-38464725

ABSTRACT

In the past 11 years, there has been a surge in studies exploring the regulatory effect of Traditional Chinese Medicine (TCM) on ferroptosis. However, a significant gap persists in comprehensive scientometric analysis and scientific mapping research, especially in tracking the evolution, primary contributors, and emerging research focal points. This study aims to comprehensively update the advancements in targeting ferroptosis with various TCMs during the previous 11 years. The data, covering the period from 1 January 2012, to 30 November 2023, were retrieved from the Web of Science database. For in-depth scientometric and visualized analyses, a series of advanced analytical instruments were employed. The findings highlight China's predominant role, accounting for 71.99% of total publications and significantly shaping research in this domain. Noteworthy productivity was observed at various institutions, including Guangzhou University of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, and Zhejiang University. Thomas Efferth emerged as the foremost author within this field, while Frontiers in Pharmacology boasted the highest publication count. This study pinpointed hepatocellular carcinoma, chemical and drug-induced liver injury, mitochondrial diseases, acute kidney injury, and liver failure as the most critical disorders addressed in this research realm. The research offers a comprehensive bibliometric evaluation, enhancing our understanding of the present status of TCM therapy in managing ferroptosis-related diseases. Consequently, it aids both seasoned researchers and newcomers by accelerating access to vital information and fostering innovative concept extraction within this specialized field.

16.
Zhongguo Zhen Jiu ; 44(1): 89-93, 2024 01 12.
Article in Chinese, English | MEDLINE | ID: mdl-38191165

ABSTRACT

Pain is a complex process of electrical signal transmission. Electroacupuncture may adjust the bioelectric state of the tissues in painful sites through electrical characteristic structural units (acupoints), thereby exerting analgesic effect. The treatment of diseases with electroacupuncture results from the interaction between the external electric field and the electrical properties of acupoint tissues. Therefore, the state of biological tissues and the parameters of electroacupuncture all affect the therapeutic effect.


Subject(s)
Electroacupuncture , Humans , Pain Management , Pain , Acupuncture Points
17.
Hum Vaccin Immunother ; 20(1): 2300157, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38198292

ABSTRACT

The 2nd China Vaccinology Integrated Innovation & Teaching Development Conference was held in Sun Yat-sen University, Shenzhen, 18-19, November 2023. Over 200 participants in the field of Vaccinology gathered together to address challenges and issues relevant to vaccine education and training courses, research, and public health programs in China. The conference themed "Promoting the Integrated and Innovative Development of Vaccinology through Collective Efforts." The conference was organized by the China Association of Vaccine (CAV) and hosted by Vaccinology Education Professional Committee of CAV, and School of Public Health (Shenzhen), Sun Yat-sen University. Other partners included the Medical Virology Branch of the Chinese Medical Association, the editorial committee of the Chinese Journal of Preventive Medicine, Human Vaccines & Immunotherapeutics, and the People's Medical Publishing House. The 1st conference was held in Hangzhou, in October 2020.


Subject(s)
Vaccines , Vaccinology , Humans , Health Education , Schools , China
18.
Adv Sci (Weinh) ; 11(6): e2308056, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059833

ABSTRACT

Due to the intrinsic contradiction of electrical conductivity and Seebeck coefficient in thermoelectric materials, the enhancement for the power factor (PF) is limited. Since the PF decides the output power, strategies to the enhancement of PF are of paramount importance. In this work, Bi2 Te3 /Sb and Bi2 Te3 /W multilayer films are proposed to enhance the thermoelectric properties. Both systems possess extremely high conductivity of ≈5.6 × 105 S m-1 . Moreover, the electrical conductivity and Seebeck coefficient simultaneously increase as temperature rising, showing the overcome of the intrinsic contradiction. This results in ultrahigh PFs of 1785 µWm-1  K-2 for Bi2 Te3 /W and of 1566 µWm-1  K-2 for Bi2 Te3 /Sb at 600 K. Thermal heating of the Bi2 Te3 /Sb multilayer system shows compositional changes with subsequent formation of Bi-Te-Sb phases, Sb-rich Bi-Te precipitates, and cavities. Contrary, the multilayer structure of the Bi2 Te3 /W films is maintained, while Bi2 Te3 grains of high-crystalline quality are confined between the W layers. In addition, bilayer defects in Bi2 Te3 and smaller cavities at the interface to W layers are also observed. Thus, compositional and confinement effects as well as structural defects result in the ultrahigh PF. Overall, this work demonstrates the strategies on how to obtain ultrahigh PFs of commercial Bi2 Te3 material by microstructure engineering using multilayer structures.

19.
Muscle Nerve ; 69(2): 227-238, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38063327

ABSTRACT

INTRODUCTION/AIMS: Many small-sized, single-center preclinical studies have investigated the benefits of introducing stem cells into the interior of nerve conduit. The aims of this meta-analysis are to review and contrast the effects of various types of stem cells in in vivo models used to reconstruct peripheral nerve injuries (PNIs) and to assess the reliability and stability of the available evidence. METHODS: A systematic search was conducted using Cochrane Library, Embase, PubMed, and Web of Science to identify studies conducted from January 1, 2000, to September 21, 2022, and investigate stem cell therapy in peripheral nerve reconstruction animal models. Studies that met the relevant criteria were deemed eligible for this meta-analysis. RESULTS: Fifty-five preclinical studies with a total of 1234 animals were incorporated. Stem cells demonstrated a positive impact on peripheral nerve regeneration at different follow-up times in the forest plots of five outcome indicators: compound muscle action potential (CMAP) amplitude, latency, muscle mass ratio, nerve conduction velocity, and sciatic functional index (SFI). In most comparisons, stem cell groups showed substantial differences compared with the control groups. The superior performance of adipose-derived stem cells (ADSCs) in terms of SFI, CMAP amplitude, and latency (p < .001) was identified. DISCUSSION: The findings consistently demonstrated a favorable outcome in the reconstruction process when utilizing different groups of stem cells, as opposed to control groups where stem cells were not employed.


Subject(s)
Peripheral Nerve Injuries , Stem Cells , Animals , Nerve Regeneration/physiology , Reproducibility of Results
20.
Aging Cell ; 23(3): e14072, 2024 03.
Article in English | MEDLINE | ID: mdl-38126583

ABSTRACT

Osteoporosis and its related fractures are common causes of morbidity and mortality in older adults, but its underlying molecular and cellular mechanisms remain largely unknown. In this study, we found that lipoteichoic acid (LTA) treatment could ameliorate age-related bone degeneration and attenuate intramedullary macrophage senescence. FOXO1 signaling, which was downregulated and deactivated in aging macrophages, played a key role in the process. Blocking FOXO1 signaling caused decreased REDD1 expression and increased phosphorylation level of mTOR, a major driver of aging, as well as aggravated bone loss and deteriorated macrophage senescence. Moreover, LTA elevated FOXO1 signaling through ß-catenin pathway while ß-catenin inhibition significantly suppressed FOXO1 signaling, promoted senescence-related protein expression, and accelerated bone degeneration and macrophage senescence. Our findings indicated that ß-catenin/FOXO1/REDD1 signaling plays a physiologically significant role that protecting macrophages from senescence during aging.


Subject(s)
Lipopolysaccharides , Osteoporosis , Teichoic Acids , beta Catenin , Humans , Aged , beta Catenin/metabolism , Signal Transduction , Macrophages/metabolism , Cellular Senescence , Wnt Signaling Pathway , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL