Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1866(5): 184329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679309

ABSTRACT

VBIT-4 is a new inhibitor of the oligomerization of VDAC proteins of the outer mitochondrial membrane preventing the development of oxidative stress, mitochondrial dysfunction, and cell death in various pathologies. However, as a VDAC inhibitor, VBIT-4 may itself cause mitochondrial dysfunction in healthy cells. The article examines the effect of VBIT-4 on the functional activity of rat liver mitochondria and cell cultures. We have demonstrated that high concentrations of VBIT-4 (15-30 µM) suppressed mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. VBIT-4 induced depolarization of organelles fueled by substrates of complex I but not complex II of the respiratory chain. VBIT-4 has been found to inhibit the activity of complexes I, III, and IV of the respiratory chain. Molecular docking demonstrated that VBIT-4 interacts with the rotenone-binding site in complex I with similar affinity. 15-30 µM VBIT-4 caused an increase in H2O2 production in mitochondria, decreased the Ca2+ retention capacity, but increased the time of Ca2+-dependent mitochondrial swelling. We have found that the incubation of breast adenocarcinoma (MCF-7) with 30 µM VBIT-4 for 48 h led to the decrease of the mitochondrial membrane potential, an increase in ROS production and death of MCF-7 cells. The mechanism of action of VBIT-4 on mitochondria and cells is discussed.


Subject(s)
Cell Survival , Mitochondria, Liver , Animals , Humans , Rats , Cell Survival/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Membrane Potential, Mitochondrial/drug effects , MCF-7 Cells , Molecular Docking Simulation , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Calcium/metabolism , Voltage-Dependent Anion Channels/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Male
2.
Biochem Biophys Res Commun ; 712-713: 149944, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38636302

ABSTRACT

This work examined the effect of 2-aminoethoxydiphenyl borate (2-APB) on the functioning of isolated mouse skeletal muscle mitochondria and modeled its putative interaction with mitochondrial proteins. We have shown that 2-APB is able to dose-dependently suppress mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. This effect of 2-APB was accompanied by a slight dose-dependent decrease in mitochondrial membrane potential and appears to be due to inhibition of complex I and complex III of the electron transport chain (ETC) with IC50 values of 200 and 120 µM, respectively. The results of molecular docking identified putative 2-APB interaction sites in these ETC complexes. 2-APB was shown to dose-dependently inhibit both mitochondrial Ca2+ uptake and Ca2+ efflux, which seems to be caused by a decrease in the membrane potential of the organelles. We have found that 2-APB has no significant effect on mitochondrial calcium retention capacity. On the other hand, 2-APB exhibited antioxidant effect by reducing mitochondrial hydrogen peroxide production but without affecting superoxide generation. It is concluded that the effect of 2-APB on mitochondrial targets should be taken into account when interpreting the results of cell and in vivo experiments.


Subject(s)
Boron Compounds , Calcium , Mitochondria, Muscle , Muscle, Skeletal , Animals , Boron Compounds/pharmacology , Boron Compounds/chemistry , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/drug effects , Calcium/metabolism , Membrane Potential, Mitochondrial/drug effects , Molecular Docking Simulation , Male
SELECTION OF CITATIONS
SEARCH DETAIL