Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Mol Ther Nucleic Acids ; 33: 617-628, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37637210

ABSTRACT

Neuromuscular junction (NMJ) dysfunction underlies several diseases, including congenital myasthenic syndromes (CMSs) and motor neuron disease (MND). Molecular pathways governing NMJ stability are therefore of interest from both biological and therapeutic perspectives. Muscle-specific kinase (MuSK) is necessary for the formation and maintenance of post-synaptic elements of the NMJ, and downstream of tyrosine kinases 7 (DOK7) is crucial for activation of the MuSK pathway. Overexpression of DOK7 using AAV9 has been shown to ameliorate neuromuscular pathology in pre-clinical disease models of CMS and MND. However, long-term consequences of DOK7 expression have been sparsely investigated and targeted overexpression of DOK7 in skeletal muscle yet to be established. Here, we developed and characterized a novel AAV9-DOK7 facilitating forced expression of DOK7 under a skeletal muscle-specific promoter. AAV9-tMCK-DOK7 was systemically delivered to newborn mice that were monitored over 6 months. DOK7 overexpression was restricted to skeletal muscles. Body weight, blood biochemistry, and histopathological assessments were unaffected by AAV9-tMCK-DOK7 treatment. In contrast, forced expression of DOK7 resulted in enlargement of both the pre- and post-synaptic components of the NMJ, without causing denervation. We conclude that muscle-specific DOK7 overexpression can be achieved in a safe manner, with the capacity to target NMJs in vivo.

2.
Nat Commun ; 11(1): 1924, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317630

ABSTRACT

Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI.


Subject(s)
Acute Kidney Injury/metabolism , Epithelial Cells/cytology , Protein Serine-Threonine Kinases/metabolism , SOX9 Transcription Factor/metabolism , Animals , Cell Death , Epithelial Cells/metabolism , Female , Green Fluorescent Proteins/metabolism , Humans , Keratinocytes/metabolism , Kidney/metabolism , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , RNA Interference , RNA, Small Interfering/metabolism
4.
Neurol Genet ; 3(6): e200, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29264392

ABSTRACT

OBJECTIVE: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. METHODS: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. RESULTS: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. CONCLUSIONS: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain.

5.
Nature ; 550(7676): 398-401, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29019980

ABSTRACT

Heterozygous mutations in the X-linked MECP2 gene cause the neurological disorder Rett syndrome. The methyl-CpG-binding protein 2 (MeCP2) protein is an epigenetic reader whose binding to chromatin primarily depends on 5-methylcytosine. Functionally, MeCP2 has been implicated in several cellular processes on the basis of its reported interaction with more than 40 binding partners, including transcriptional co-repressors (for example, the NCoR/SMRT complex), transcriptional activators, RNA, chromatin remodellers, microRNA-processing proteins and splicing factors. Accordingly, MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential in mature neurons. At odds with the concept of broad functionality, missense mutations that cause Rett syndrome are concentrated in two discrete clusters coinciding with interaction sites for partner macromolecules: the methyl-CpG binding domain and the NCoR/SMRT interaction domain. Here we test the hypothesis that the single dominant function of MeCP2 is to physically connect DNA with the NCoR/SMRT complex, by removing almost all amino-acid sequences except the methyl-CpG binding and NCoR/SMRT interaction domains. We find that mice expressing truncated MeCP2 lacking both the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for over one year with only mild symptoms. This minimal protein is able to prevent or reverse neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2 protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid Rett syndrome-like defects and may therefore have therapeutic utility.


Subject(s)
Genetic Complementation Test , Genetic Therapy/methods , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Rett Syndrome/genetics , Rett Syndrome/therapy , Sequence Deletion , 3T3 Cells , Animals , Brain/metabolism , DNA/metabolism , HeLa Cells , Humans , Male , Methyl-CpG-Binding Protein 2/chemistry , Methyl-CpG-Binding Protein 2/deficiency , Mice , Mutation, Missense , Phenotype , Protein Domains/genetics , Protein Stability , Rett Syndrome/pathology , Rett Syndrome/physiopathology , Transduction, Genetic
6.
Neuroscience ; 358: 261-268, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28687309

ABSTRACT

Rett syndrome (RTT) is a neurological disorder characterized by motor and cognitive impairment, autonomic dysfunction and a loss of purposeful hand skills. In the majority of cases, typical RTT is caused by de novo mutations in the X-linked gene, MECP2. Alterations in the structure and function of neurons within the central nervous system of RTT patients and Mecp2-null mouse models are well established. In contrast, few studies have investigated the effects of MeCP2-deficiency on peripheral nerves. In this study, we conducted detailed morphometric as well as functional analysis of the sciatic nerves of symptomatic adult female Mecp2+/- mice. We observed a significant reduction in the mean diameter of myelinated nerve fibers in Mecp2+/- mice. In myelinated fibers, mitochondrial densities per unit area of axoplasm were significantly altered in Mecp2+/- mice. However, conduction properties of the sciatic nerve of Mecp2 knockout mice were not different from control. These subtle changes in myelinated peripheral nerve fibers in heterozygous Mecp2 knockout mice could potentially explain some RTT phenotypes.


Subject(s)
Axons/pathology , Nerve Fibers, Myelinated/pathology , Rett Syndrome/pathology , Sciatic Nerve/pathology , Action Potentials/genetics , Animals , Axons/ultrastructure , Biophysics , Disease Models, Animal , Electric Stimulation , Female , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , Mitochondria/pathology , Mitochondria/ultrastructure , Neural Conduction/genetics , Rett Syndrome/genetics
7.
Mol Ther Methods Clin Dev ; 5: 106-115, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28497072

ABSTRACT

Intravenous administration of adeno-associated virus serotype 9 (AAV9)/hMECP2 has been shown to extend the lifespan of Mecp2-/y mice, but this delivery route induces liver toxicity in wild-type (WT) mice. To reduce peripheral transgene expression, we explored the safety and efficacy of AAV9/hMECP2 injected into the cisterna magna (ICM). AAV9/hMECP2 (1 × 1012 viral genomes [vg]; ICM) extended Mecp2-/y survival but aggravated hindlimb clasping and abnormal gait phenotypes. In WT mice, 1 × 1012 vg of AAV9/hMECP2 induced clasping and abnormal gait. A lower dose mitigated these adverse phenotypes but failed to extend survival of Mecp2-/y mice. Thus, ICM delivery of this vector is impractical as a treatment for Rett syndrome (RTT). To improve the safety of MeCP2 gene therapy, the gene expression cassette was modified to include more endogenous regulatory elements believed to modulate MeCP2 expression in vivo. In Mecp2-/y mice, ICM injection of the modified vector extended lifespan and was well tolerated by the liver but did not rescue RTT behavioral phenotypes. In WT mice, these same doses of the modified vector had no adverse effects on survival or neurological phenotypes. In summary, we identified limitations of the original vector and demonstrated that an improved vector design extends Mecp2-/y survival, without apparent toxicity.

8.
Mol Ther Methods Clin Dev ; 5: 180-190, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28497075

ABSTRACT

Rett syndrome (RTT), caused by loss-of-function mutations in the MECP2 gene, is a neurological disorder characterized by severe impairment of motor and cognitive functions. The aim of this study was to investigate the impact of vector design, dosage, and delivery route on the efficacy and safety of gene augmentation therapy in mouse models of RTT. Our results show that AAV-mediated delivery of MECP2 to Mecp2 null mice by systemic administration, and utilizing a minimal endogenous promoter, was associated with a narrow therapeutic window and resulted in liver toxicity at higher doses. Lower doses of this vector significantly extended the survival of mice lacking MeCP2 or expressing a mutant T158M allele but had no impact on RTT-like neurological phenotypes. Modifying vector design by incorporating an extended Mecp2 promoter and additional regulatory 3' UTR elements significantly reduced hepatic toxicity after systemic administration. Moreover, direct cerebroventricular injection of this vector into neonatal Mecp2-null mice resulted in high brain transduction efficiency, increased survival and body weight, and an amelioration of RTT-like phenotypes. Our results show that controlling levels of MeCP2 expression in the liver is achievable through modification of the expression cassette. However, it also highlights the importance of achieving high brain transduction to impact the RTT-like phenotypes.

9.
Gene ; 603: 21-26, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27940108

ABSTRACT

CDKL5 deficiency is a severe neurological disorder caused by mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5). The predominant human CDKL5 brain isoform is a 9.7kb transcript comprised of 18 exons with a large 6.6kb 3'-untranslated region (UTR). Mammalian models of CDKL5 disorder are currently limited to mouse, and little is known about Cdkl5 in other organisms used to model neurodevelopmental disorders, such as rat. In this study we characterise, both bioinformatically and experimentally, the rat Cdkl5 gene structure and its associated transcript isoforms. New exonic regions, splice sites and UTRs are described, confirming the presence of four distinct transcript isoforms. The predominant isoform in the brain, which we name rCdkl5_1, is orthologous to the human hCDKL5_1 and mouse mCdkl5_1 isoforms and is the most highly expressed isoform across all brain regions tested. This updated gene model of Cdkl5 in rat provides a framework for studies into its protein products and provides a reference for the development of molecular therapies for testing in rat models of CDKL5 disorder.


Subject(s)
3' Untranslated Regions , Alternative Splicing , Protein Serine-Threonine Kinases/genetics , RNA Splice Sites , Animals , Brain Chemistry , Exons , Gene Expression , Humans , Introns , Mice , Open Reading Frames , Organ Specificity , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Rats , Sequence Homology, Nucleic Acid
10.
Neurochem Int ; 100: 110-119, 2016 11.
Article in English | MEDLINE | ID: mdl-27623092

ABSTRACT

To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography - tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were significant increases in the levels of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (3-HK) in the maternal brain after 5 h but not 24 h, while the embryos exhibited high levels of kynurenine, kynurenic acid and anthranilic acid after 5 h which were maintained at 24 h post-treatment. At 24 h there was also a strong trend to an increase in quinolinic acid levels (P = 0.055). No significant changes were observed in any of the other kynurenine metabolites. The results confirm the marked increase in the accumulation of some neuroactive kynurenines when KMO is inhibited, and re-emphasise the potential importance of changes in anthranilic acid. The prolonged duration of metabolite accumulation in the embryo brains indicates a trapping of compounds within the embryonic CNS independently of maternal levels. When brains were examined from young mice heterozygous for the meCP2 gene - a potential model for Rett syndrome - no differences were noted from control mice, suggesting that the proposed roles for kynurenines in autism spectrum disorder are not relevant to Rett syndrome, supporting its recognition as a distinct, independent, condition.


Subject(s)
Brain/drug effects , Kynurenic Acid/pharmacology , Kynurenine/metabolism , Methyl-CpG-Binding Protein 2/genetics , Tryptophan/metabolism , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Brain/metabolism , Chromatography, Liquid/methods , Female , Pregnancy , Rats, Wistar , Tandem Mass Spectrometry , ortho-Aminobenzoates/pharmacology
11.
PLoS One ; 11(6): e0157758, 2016.
Article in English | MEDLINE | ID: mdl-27315173

ABSTRACT

Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.


Subject(s)
Alternative Splicing/genetics , Protein Serine-Threonine Kinases/genetics , Spasms, Infantile/genetics , Transcription, Genetic , Amino Acid Sequence , Animals , Exons/genetics , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn , Mice , Mutation , Phenotype , Polyadenylation/genetics , Protein Isoforms , Protein Serine-Threonine Kinases/biosynthesis , Spasms, Infantile/pathology
13.
Bone ; 71: 106-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25445449

ABSTRACT

Rett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder. In order to explore whether MeCP2 protein deficiency results in altered structural and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series of histological, imaging and biomechanical tests of bone in a functional knockout mouse model of RTT. Both hemizygous Mecp2(stop/y) male mice in which Mecp2 is silenced in all cells and female Mecp2(stop/+) mice in which Mecp2 is silenced in ~50% of cells as a consequence of random X-chromosome inactivation, revealed significant reductions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alterations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore, unsilencing of Mecp2 in adult mice cre-mediated stop cassette deletion resulted in a restoration of biomechanical properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies.


Subject(s)
Bone and Bones/physiopathology , Rett Syndrome/physiopathology , Animals , Biomechanical Phenomena , Body Weight , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Collagen/metabolism , Disease Models, Animal , Female , Femoral Neck Fractures/pathology , Femoral Neck Fractures/physiopathology , Femur/pathology , Femur/physiopathology , Femur/ultrastructure , Genotype , Hardness , Male , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred C57BL , Minerals/chemistry , Organ Size , Particle Size , Rett Syndrome/diagnostic imaging , Rett Syndrome/pathology , Scattering, Small Angle , Staining and Labeling , Tamoxifen/pharmacology , Tibia/metabolism , Tibia/pathology , Tibia/physiopathology , X-Ray Diffraction , X-Ray Microtomography
14.
PLoS One ; 9(11): e112889, 2014.
Article in English | MEDLINE | ID: mdl-25392929

ABSTRACT

Rett syndrome (RTT) is a genetic disorder characterized by a range of features including cognitive impairment, gait abnormalities and a reduction in purposeful hand skills. Mice harbouring knockout mutations in the Mecp2 gene display many RTT-like characteristics and are central to efforts to find novel therapies for the disorder. As hand stereotypies and gait abnormalities constitute major diagnostic criteria in RTT, it is clear that motor and gait-related phenotypes will be of importance in assessing preclinical therapeutic outcomes. We therefore aimed to assess gait properties over the prodromal phase in a functional knockout mouse model of RTT. In male Mecp2 knockout mice, we observed alterations in stride, coordination and balance parameters at 4 weeks of age, before the onset of other overt phenotypic changes as revealed by observational scoring. These data suggest that gait measures may be used as a robust and early marker of MeCP2-dysfunction in future preclinical therapeutic studies.


Subject(s)
Gait Ataxia/physiopathology , Methyl-CpG-Binding Protein 2/deficiency , Motor Disorders/physiopathology , Rett Syndrome/physiopathology , Animals , Disease Models, Animal , Gait Ataxia/genetics , Male , Mice , Mice, Knockout , Motor Disorders/genetics , Rett Syndrome/genetics
15.
Neuropharmacology ; 68: 1, 2013 May.
Article in English | MEDLINE | ID: mdl-23402709
16.
Mol Ther ; 21(1): 18-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23011033

ABSTRACT

Typical Rett syndrome (RTT) is a pediatric disorder caused by loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. The demonstrated reversibility of RTT-like phenotypes in mice suggests that MECP2 gene replacement is a potential therapeutic option in patients. We report improvements in survival and phenotypic severity in Mecp2-null male mice after neonatal intracranial delivery of a single-stranded (ss) AAV9/chicken ß-actin (CBA)-MECP2 vector. Median survival was 16.6 weeks for MECP2-treated versus 9.3 weeks for green fluorescent protein (GFP)-treated mice. ssAAV9/CBA-MECP2-treated mice also showed significant improvement in the phenotype severity score, in locomotor function, and in exploratory activity, as well as a normalization of neuronal nuclear volume in transduced cells. Wild-type (WT) mice receiving neonatal injections of the same ssAAV9/CBA-MECP2 vector did not show any significant deficits, suggesting a tolerance for modest MeCP2 overexpression. To test a MECP2 gene replacement approach in a manner more relevant for human translation, a self-complementary (sc) adeno-associated virus (AAV) vector designed to drive MeCP2 expression from a fragment of the Mecp2 promoter was injected intravenously (IV) into juvenile (4-5 weeks old) Mecp2-null mice. While the brain transduction efficiency in juvenile mice was low (~2-4% of neurons), modest improvements in survival were still observed. These results support the concept of MECP2 gene therapy for RTT.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy , Mice, Knockout/physiology , Rett Syndrome/therapy , Survival Rate , Animals , Animals, Newborn , Brain/metabolism , Male , Mice , Mice, Knockout/genetics , Phenotype , Rett Syndrome/genetics
17.
Brain ; 135(Pt 9): 2699-710, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22525157

ABSTRACT

Rett syndrome is a neurological disorder caused by mutation of the X-linked MECP2 gene. Mice lacking functional Mecp2 display a spectrum of Rett syndrome-like signs, including disturbances in motor function and abnormal patterns of breathing, accompanied by structural defects in central motor areas and the brainstem. Although routinely classified as a neurodevelopmental disorder, many aspects of the mouse phenotype can be effectively reversed by activation of a quiescent Mecp2 gene in adults. This suggests that absence of Mecp2 during brain development does not irreversibly compromise brain function. It is conceivable, however, that deep-seated neurological defects persist in mice rescued by late activation of Mecp2. To test this possibility, we have quantitatively analysed structural and functional plasticity of the rescued adult male mouse brain. Activation of Mecp2 in ∼70% of neurons reversed many morphological defects in the motor cortex, including neuronal size and dendritic complexity. Restoration of Mecp2 expression was also accompanied by a significant improvement in respiratory and sensory-motor functions, including breathing pattern, grip strength, balance beam and rotarod performance. Our findings sustain the view that MeCP2 does not play a pivotal role in brain development, but may instead be required to maintain full neurological function once development is complete.


Subject(s)
Behavior, Animal/physiology , Cerebral Cortex/pathology , Methyl-CpG-Binding Protein 2/genetics , Neurons/pathology , Phenotype , Rett Syndrome/genetics , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Disease Models, Animal , Gene Silencing , Hand Strength/physiology , Humans , Methyl-CpG-Binding Protein 2/metabolism , Mice , Neurons/metabolism , Rett Syndrome/metabolism , Rett Syndrome/pathology , Rett Syndrome/physiopathology , Rotarod Performance Test
18.
Pediatr Neonatol ; 52(6): 309-16, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22192257

ABSTRACT

Rett syndrome (RTT), a neurodevelopmental condition characterized by delayed-onset loss of spoken language and the development of distinctive hand stereotypies, affects approximately 1 in 10,000 live female births. Clinical diagnosis has been based on symptoms such as loss of acquired purposeful hand skills, autistic behaviors, motor dysfunctions, seizure disorders, and gait abnormalities. RTT is a genetic disease and is caused almost exclusively by mutations in the X-linked gene, MECP2, to produce a phenotype that is thought to be primarily of neurological origin. Clinical reports show RTT patients to have a smaller brain volume, especially in the cerebral hemispheres, and alterations in various neurotransmitter systems, including acetylcholine, dopamine, serotonin, glutamate, substance P, and various trophic factors. Because of its monogenetic characteristic, disruption of Mecp2 is readily recapitulated in mice to produce a prominent RTT-like phenotype and provide an excellent platform for understanding the pathogenesis of RTT. As shown in human studies, Mecp2 mutants also display subtle alterations in neuronal morphology, including smaller cortical neurons with a higher-packing density and reduced dendritic complexity. Neurophysiological studies in Mecp2-mutant mice consistently report alterations in synaptic function, notably, defects in synaptic plasticity. These data suggest that RTT might be regarded as a synaptopathy (disease of the synapse) and thus potentially amenable to rational therapeutic intervention.


Subject(s)
Rett Syndrome , Animals , Brain/pathology , Disease Models, Animal , Electroencephalography , Genetic Linkage , Genetic Therapy , Humans , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout , Neuronal Plasticity/physiology , Organ Size , Rett Syndrome/diagnosis , Rett Syndrome/genetics , Rett Syndrome/pathology , Rett Syndrome/physiopathology , Rett Syndrome/therapy
19.
Eur J Neurosci ; 34(11): 1737-46, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22098422

ABSTRACT

Caspase 3 activation has been linked to the acute neurotoxic effects of central nervous system damage, as in traumatic brain injury or cerebral ischaemia, and also to the early events leading to long-term neurodegeneration, as in Alzheimer's disease. However, the precise mechanisms activating caspase 3 in neuronal injury are unclear. RhoB is a member of the Rho GTPase family that is dramatically induced by cerebral ischaemia or neurotrauma, both in preclinical models and clinically. In the current study, we tested the hypothesis that RhoB might directly modulate caspase 3 activity and apoptotic or necrotic responses in neurons. Over-expression of RhoB in the NG108-15 neuronal cell line or in cultured corticohippocampal neurons elevated caspase 3 activity without inducing overt toxicity. Cultured corticohippocampal neurons from RhoB knockout mice did not show any differences in sensitivity to a necrotic stimulus - acute calcium ionophore exposure - compared with neurons from wild-type mice. However, corticohippocampal neurons lacking RhoB exhibited a reduction in the degree of DNA fragmentation and caspase 3 activation induced by the apoptotic agent staurosporine, in parallel with increased neuronal survival. Staurosporine induction of caspase 9 activity was also suppressed. RhoB knockout mice showed reduced basal levels of caspase 3 activity in the adult brain. These data directly implicate neuronal RhoB in caspase 3 activation and the initial stages of programmed cell death, and suggest that RhoB may represent an attractive target for therapeutic intervention in conditions involving elevated caspase 3 activity in the central nervous system.


Subject(s)
Apoptosis/physiology , Neurons/enzymology , rhoB GTP-Binding Protein/metabolism , Animals , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cells, Cultured , DNA Fragmentation , Enzyme Activation , Gene Deletion , Hippocampus/cytology , Mice , Mice, Knockout , Neurons/cytology , bcl-2-Associated X Protein/metabolism , rhoB GTP-Binding Protein/genetics
20.
Biochem J ; 439(1): 1-14, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21916843

ABSTRACT

Mutations in the X-linked gene MECP2 (methyl CpG-binding protein 2) are the primary cause of the neurodevelopmental disorder RTT (Rett syndrome), and are also implicated in other neurological conditions. The expression product of this gene, MeCP2, is a widely expressed nuclear protein, especially abundant in mature neurons of the CNS (central nervous system). The major recognized consequences of MECP2 mutation occur in the CNS, but there is growing awareness of peripheral effects contributing to the full RTT phenotype. MeCP2 is classically considered to act as a DNA methylation-dependent transcriptional repressor, but may have additional roles in regulating gene expression and chromatin structure. Knocking out Mecp2 function in mice recapitulates many of the overt neurological features seen in RTT patients, and the characteristic postnatally delayed onset of symptoms is accompanied by aberrant neuronal morphology and deficits in synaptic physiology. Evidence that reactivation of endogenous Mecp2 in mutant mice, even at adult stages, can reverse aspects of RTT-like pathology and result in apparently functionally mature neurons has provided renewed hope for patients, but has also provoked discussion about traditional boundaries between neurodevelopmental disorders and those involving dysfunction at later stages. In the present paper we review the neurobiology of MeCP2 and consider the various genetic (including gene therapy), pharmacological and environmental interventions that have been, and could be, developed to attempt phenotypic rescue in RTT. Such approaches are already providing valuable insights into the potential tractability of RTT and related conditions, and are useful pointers for the development of future therapeutic strategies.


Subject(s)
Methyl-CpG-Binding Protein 2/metabolism , Rett Syndrome/metabolism , Animals , Genetic Therapy , Humans , Methyl-CpG-Binding Protein 2/genetics , Rett Syndrome/genetics , Rett Syndrome/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...