Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Pragmat Obs Res ; 14: 95-100, 2023.
Article in English | MEDLINE | ID: mdl-37701044

ABSTRACT

There is a growing interest in real world evidence when developing antineoplastic drugs owing to the shorter length of time and low costs compared to randomised controlled trials. External validity of studies in the regulatory phase can be enhanced by complementing randomised controlled trials with real world evidence. Furthermore, the use of real world evidence ensures the inclusion of patients often excluded from randomised controlled trials such as the elderly, certain ethnicities or those from certain geographical areas. This review explores approaches in which real world data may be integrated with randomised controlled trials. One approach is by using big data, especially when investigating drugs in the antineoplastic setting. This can even inform artificial intelligence thus ensuring faster and more precise diagnosis and treatment decisions. Pragmatic trials also offer an approach to examine the effectiveness of novel antineoplastic drugs without evading the benefits of randomised controlled trials. A well-designed pragmatic trial would yield results with high external validity by employing a simple study design with a large sample size and diverse settings. Although randomised controlled trials can determine efficacy of antineoplastic drugs, effectiveness in the real world may differ. The need for pragmatic trials to help guide healthcare decision-making led to the development of trials within cohorts (TWICs). TWICs make use of cohorts to conduct multiple randomised controlled trials while maintaining characteristics of real world data in routine clinical practice. Although real world data is often affected by incomplete data and biases such as selection and unmeasured biases, the use of big data and pragmatic approaches can improve the use of real world data in the development of antineoplastic drugs that can in turn steer decision-making in clinical practice.

2.
Cancer Med ; 12(12): 13856-13864, 2023 06.
Article in English | MEDLINE | ID: mdl-37096787

ABSTRACT

BACKGROUND: Patients with muscle-invasive bladder cancer (MIBC) constitute a heterogenous group in terms of patient and tumour characteristics ('case-mix') and prognosis. The aim of the current study was to investigate whether differences in survival could be used to separate MIBC patients into separate classes using a recently developed latent class regression method for survival analysis with competing risks. METHODS: We selected all participants diagnosed with MIBC in the Bladder Cancer Data Base Sweden (BladderBase) and analysed inter-patient heterogeneity in risk of death from bladder cancer and other causes. RESULTS: Using data from 9653 MIBC patients, we detected heterogeneity with six distinct latent classes in the studied population. The largest, and most frail class included 50% of the study population and was characterised by a somewhat larger proportion of women, higher age at diagnosis, more advanced disease and lower probability of curative treatment. Despite this, patients in this class treated with curative intent by radical cystectomy or radiotherapy had a lower association to risk of death. The second largest class included 23% and was substantially less frail as compared to the largest class. The third and fourth class included each around 9%-10%, whereas the fifth and sixth class included each 3%-4% of the population. CONCLUSIONS: Results from the current study are compatible with previous research and the method can be used to adjust comparisons in prognosis between MIBC populations for influential differences in the distribution of sub-classes.


Subject(s)
Urinary Bladder Neoplasms , Humans , Female , Sweden/epidemiology , Neoplasm Invasiveness , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/pathology , Prognosis , Cystectomy , Muscles/pathology
3.
Genet Epidemiol ; 47(5): 365-378, 2023 07.
Article in English | MEDLINE | ID: mdl-37060326

ABSTRACT

Many diseases recur after recovery, for example, recurrences in cancer and infections. However, research is often focused on analysing only time-to-first recurrence, thereby ignoring any subsequent recurrences that may occur after the first. Statistical models for the analysis of recurrent events are available, of which the extended Cox proportional hazards frailty model is the current state-of-the-art. However, this model is too statistically complex for computationally efficient application in high-dimensional data sets, including genome-wide association studies (GWAS). Here, we develop an application for fast and accurate recurrent event analysis in GWAS, called SPARE (SaddlePoint Approximation for Recurrent Event analysis). In SPARE, every DNA variant is tested for association with recurrence risk using a modified score statistic. A saddlepoint approximation is implemented to achieve statistical accuracy. SPARE controls the Type I error, and its statistical power is similar to existing recurrent event models, yet SPARE is significantly faster. An application of SPARE in a recurrent event GWAS on bladder cancer for 6.2 million DNA variants in 1,443 individuals required less than 15 min, whereas existing recurrent event methods would require several weeks.


Subject(s)
Genome-Wide Association Study , Neoplasm Recurrence, Local , Humans , Models, Genetic , Models, Statistical , Proportional Hazards Models
4.
Elife ; 112022 12 23.
Article in English | MEDLINE | ID: mdl-36562609

ABSTRACT

Background: Advanced head and neck squamous cell carcinoma (HNSCC) is associated with a poor prognosis, and biomarkers that predict response to treatment are highly desirable. The primary aim was to predict progression-free survival (PFS) with a multivariate risk prediction model. Methods: Experimental covariates were derived from blood samples of 56 HNSCC patients which were prospectively obtained within a Phase 2 clinical trial (NCT02633800) at baseline and after the first treatment cycle of combined platinum-based chemotherapy with cetuximab treatment. Clinical and experimental covariates were selected by Bayesian multivariate regression to form risk scores to predict PFS. Results: A 'baseline' and a 'combined' risk prediction model were generated, each of which featuring clinical and experimental covariates. The baseline risk signature has three covariates and was strongly driven by baseline percentage of CD33+CD14+HLADRhigh monocytes. The combined signature has six covariates, also featuring baseline CD33+CD14+HLADRhigh monocytes but is strongly driven by on-treatment relative change of CD8+ central memory T cells percentages. The combined model has a higher predictive power than the baseline model and was successfully validated to predict therapeutic response in an independent cohort of nine patients from an additional Phase 2 trial (NCT03494322) assessing the addition of avelumab to cetuximab treatment in HNSCC. We identified tissue counterparts for the immune cells driving the models, using imaging mass cytometry, that specifically colocalized at the tissue level and correlated with outcome. Conclusions: This immune-based combined multimodality signature, obtained through longitudinal peripheral blood monitoring and validated in an independent cohort, presents a novel means of predicting response early on during the treatment course. Funding: Daiichi Sankyo Inc, Cancer Research UK, EU IMI2 IMMUCAN, UK Medical Research Council, European Research Council (335326), Merck Serono. Cancer Research Institute, National Institute for Health Research, Guy's and St Thomas' NHS Foundation Trust and The Institute of Cancer Research. Clinical trial number: NCT02633800.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Cetuximab/therapeutic use , Progression-Free Survival , Bayes Theorem , Head and Neck Neoplasms/drug therapy
5.
Phys Rev E ; 103(4-1): 042142, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005980

ABSTRACT

It is clear that conventional statistical inference protocols need to be revised to deal correctly with the high-dimensional data that are now common. Most recent studies aimed at achieving this revision rely on powerful approximation techniques that call for rigorous results against which they can be tested. In this context, the simplest case of high-dimensional linear regression has acquired significant new relevance and attention. In this paper we use the statistical physics perspective on inference to derive several exact results for linear regression in the high-dimensional regime.

6.
Cancer Cell ; 39(2): 257-275.e6, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33476581

ABSTRACT

Given the immune system's importance for cancer surveillance and treatment, we have investigated how it may be affected by SARS-CoV-2 infection of cancer patients. Across some heterogeneity in tumor type, stage, and treatment, virus-exposed solid cancer patients display a dominant impact of SARS-CoV-2, apparent from the resemblance of their immune signatures to those for COVID-19+ non-cancer patients. This is not the case for hematological malignancies, with virus-exposed patients collectively displaying heterogeneous humoral responses, an exhausted T cell phenotype and a high prevalence of prolonged virus shedding. Furthermore, while recovered solid cancer patients' immunophenotypes resemble those of non-virus-exposed cancer patients, recovered hematological cancer patients display distinct, lingering immunological legacies. Thus, while solid cancer patients, including those with advanced disease, seem no more at risk of SARS-CoV-2-associated immune dysregulation than the general population, hematological cancer patients show complex immunological consequences of SARS-CoV-2 exposure that might usefully inform their care.


Subject(s)
COVID-19/immunology , Neoplasms/immunology , Neoplasms/virology , Severe Acute Respiratory Syndrome/immunology , Adult , Aged , Aged, 80 and over , COVID-19/etiology , COVID-19/mortality , Female , Hematologic Neoplasms/immunology , Hematologic Neoplasms/mortality , Hematologic Neoplasms/therapy , Hematologic Neoplasms/virology , Humans , Immunophenotyping , Male , Middle Aged , Nasopharynx/virology , Neoplasms/mortality , Neoplasms/therapy , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/virology , T-Lymphocytes/virology , Virus Shedding , Young Adult
7.
J Neuroeng Rehabil ; 18(1): 186, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34972526

ABSTRACT

INTRODUCTION: After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke patients. METHODS: We present a method for estimating clinical scores from movement parameters that are extracted from kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of kinematic descriptors that characterise the patients' hemiparesis (e.g., movement smoothness, work area), we implement a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who completed a total of 191 sessions with RGS. RESULTS: Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), which relates to the patients work area during the execution of goal-oriented reaching movements. The model's performance to estimate FM-UE scores reaches an accuracy of [Formula: see text]: 0.38 with an error ([Formula: see text]: 12.8). Next, we evaluate its reliability ([Formula: see text] for test-retest), longitudinal external validity ([Formula: see text] true positive rate), sensitivity, and generalisation to other tasks that involve planar reaching movements ([Formula: see text]: 0.39). The model achieves comparable accuracy also for the Chedoke Arm and Hand Activity Inventory ([Formula: see text]: 0.40) and Barthel Index ([Formula: see text]: 0.35). CONCLUSIONS: Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented motor training with the RGS combined with data science techniques, and provide new insight into factors underlying recovery and its biomarkers.


Subject(s)
Stroke Rehabilitation , Stroke , Biomechanical Phenomena , Goals , Humans , Recovery of Function , Reproducibility of Results , Stroke Rehabilitation/methods , Upper Extremity
8.
J Natl Cancer Inst ; 112(9): 944-954, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31851321

ABSTRACT

BACKGROUND: The phase III MRC COIN trial showed no statistically significant benefit from adding the EGFR-target cetuximab to oxaliplatin-based chemotherapy in first-line treatment of advanced colorectal cancer. This study exploits additional information on HER2-HER3 dimerization to achieve patient stratification and reveal previously hidden subgroups of patients who had differing disease progression and treatment response. METHODS: HER2-HER3 dimerization was quantified by fluorescence lifetime imaging microscopy in primary tumor samples from 550 COIN trial patients receiving oxaliplatin and fluoropyrimidine chemotherapy with or without cetuximab. Bayesian latent class analysis and covariate reduction was performed to analyze the effects of HER2-HER3 dimer, RAS mutation, and cetuximab on progression-free survival and overall survival (OS). All statistical tests were two-sided. RESULTS: Latent class analysis on a cohort of 398 patients revealed two patient subclasses with differing prognoses (median OS = 1624 days [95% confidence interval [CI] = 1466 to 1816 days] vs 461 days [95% CI = 431 to 504 days]): Class 1 (15.6%) showed a benefit from cetuximab in OS (hazard ratio = 0.43, 95% CI = 0.25 to 0.76, P = .004). Class 2 showed an association of increased HER2-HER3 with better OS (hazard ratio = 0.64, 95% CI = 0.44 to 0.94, P = .02). A class prediction signature was formed and tested on an independent validation cohort (n = 152) validating the prognostic utility of the dimer assay. Similar subclasses were also discovered in full trial dataset (n = 1630) based on 10 baseline clinicopathological and genetic covariates. CONCLUSIONS: Our work suggests that the combined use of HER dimer imaging and conventional mutation analyses will be able to identify a small subclass of patients (>10%) who will have better prognosis following chemotherapy. A larger prospective cohort will be required to confirm its utility in predicting the outcome of anti-EGFR treatment.


Subject(s)
Adenocarcinoma/diagnosis , Colorectal Neoplasms/diagnosis , Fluorescence Resonance Energy Transfer , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/therapy , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bayes Theorem , Capecitabine/therapeutic use , Cohort Studies , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/therapy , Female , Humans , Latent Class Analysis , Male , Microscopy/methods , Middle Aged , Oxaloacetates/therapeutic use , Prognosis , Protein Multimerization , Randomized Controlled Trials as Topic/statistics & numerical data , Receptor, ErbB-2/analysis , Receptor, ErbB-3/analysis , Tissue Array Analysis , Treatment Outcome
9.
Int J Cancer ; 143(8): 1868-1875, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29744858

ABSTRACT

Most previous studies of prostate cancer have not taken into account that men in the studied populations are also at risk of competing event, and that these men may have different susceptibility to prostate cancer risk. The aim of our study was to investigate heterogeneity in risk of prostate cancer, using a recently developed latent class regression method for competing risks. We further aimed to elucidate the association between Type 2 diabetes mellitus (T2DM) and prostate cancer risk, and to compare the results with conventional methods for survival analysis. We analysed the risk of prostate cancer in 126,482 men from the comparison cohort of the Prostate Cancer Data base Sweden (PCBaSe) 3.0. During a mean follow-up of 6 years 6,036 men were diagnosed with prostate cancer and 22,393 men died. We detected heterogeneity in risk of prostate cancer with two distinct latent classes in the study population. The smaller class included 9% of the study population in which men had a higher risk of prostate cancer and the risk was stronger associated with class membership than any of the covariates included in the study. Moreover, we found no association between T2DM and risk of prostate cancer after removal of the effect of informative censoring due to competing risks. The recently developed latent class for competing risks method could be used to provide new insights in precision medicine with the target to classify individuals regarding different susceptibility to a particular disease, reaction to a risk factor or response to treatment.


Subject(s)
Diabetes Mellitus, Type 2/complications , Prostatic Neoplasms/etiology , Aged , Aged, 80 and over , Cohort Studies , Humans , Male , Middle Aged , Research Design , Risk Factors , Survival Analysis , Sweden
10.
Stat Med ; 35(8): 1340-53, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26526057

ABSTRACT

The analysis of high-dimensional survival data is challenging, primarily owing to the problem of overfitting, which occurs when spurious relationships are inferred from data that subsequently fail to exist in test data. Here, we propose a novel method of extracting a low-dimensional representation of covariates in survival data by combining the popular Gaussian process latent variable model with a Weibull proportional hazards model. The combined model offers a flexible non-linear probabilistic method of detecting and extracting any intrinsic low-dimensional structure from high-dimensional data. By reducing the covariate dimension, we aim to diminish the risk of overfitting and increase the robustness and accuracy with which we infer relationships between covariates and survival outcomes. In addition, we can simultaneously combine information from multiple data sources by expressing multiple datasets in terms of the same low-dimensional space. We present results from several simulation studies that illustrate a reduction in overfitting and an increase in predictive performance, as well as successful detection of intrinsic dimensionality. We provide evidence that it is advantageous to combine dimensionality reduction with survival outcomes rather than performing unsupervised dimensionality reduction on its own. Finally, we use our model to analyse experimental gene expression data and detect and extract a low-dimensional representation that allows us to distinguish high-risk and low-risk groups with superior accuracy compared with doing regression on the original high-dimensional data.


Subject(s)
Models, Statistical , Survival Analysis , Biostatistics , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Computer Simulation , Data Interpretation, Statistical , Female , Gene Expression Profiling/statistics & numerical data , Humans , Machine Learning , Multivariate Analysis , Nonlinear Dynamics , Normal Distribution , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Proportional Hazards Models
11.
Sci Rep ; 5: 8540, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25703051

ABSTRACT

Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.


Subject(s)
Protein Interaction Mapping , Proteins/metabolism , Algorithms , Humans , Protein Interaction Maps , Proteins/chemistry
12.
Biochem Soc Trans ; 42(6): 1498-505, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25399560

ABSTRACT

Breast cancer heterogeneity demands that prognostic models must be biologically driven and recent clinical evidence indicates that future prognostic signatures need evaluation in the context of early compared with late metastatic risk prediction. In pre-clinical studies, we and others have shown that various protein-protein interactions, pertaining to the actin microfilament-associated proteins, ezrin and cofilin, mediate breast cancer cell migration, a prerequisite for cancer metastasis. Moreover, as a direct substrate for protein kinase Cα, ezrin has been shown to be a determinant of cancer metastasis for a variety of tumour types, besides breast cancer; and has been described as a pivotal regulator of metastasis by linking the plasma membrane to the actin cytoskeleton. In the present article, we demonstrate that our tissue imaging-derived parameters that pertain to or are a consequence of the PKC-ezrin interaction can be used for breast cancer prognostication, with inter-cohort reproducibility. The application of fluorescence lifetime imaging microscopy (FLIM) in formalin-fixed paraffin-embedded patient samples to probe protein proximity within the typically <10 nm range to address the oncological challenge of tumour heterogeneity, is discussed.


Subject(s)
Breast Neoplasms/pathology , Protein Kinase C-alpha/metabolism , Actin Depolymerizing Factors/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , Cytoskeletal Proteins/metabolism , Female , Fluorescence Resonance Energy Transfer , Humans , Neoplasm Metastasis , Phosphorylation , Subcellular Fractions/metabolism , Substrate Specificity , Treatment Outcome
13.
Chemphyschem ; 12(3): 442-61, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21328516

ABSTRACT

Herein we discuss how FRET imaging can contribute at various stages to delineate the function of the proteome. Therefore, we briefly describe FRET imaging techniques, the selection of suitable FRET pairs and potential caveats. Furthermore, we discuss state-of-the-art FRET-based screening approaches (underpinned by protein interaction network analysis using computational biology) and preclinical intravital FRET-imaging techniques that can be used for functional validation of candidate hits (nodes and edges) from the network screen, as well as measurement of the efficacy of perturbing these nodes/edges by short hairpin RNA (shRNA) and/or small molecule-based approaches.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Neoplasms/metabolism , Protein Interaction Mapping , Proteins/chemistry , Computational Biology , Fluorescent Dyes/chemistry , Humans , Protein Interaction Domains and Motifs , Proteins/metabolism
14.
PLoS One ; 5(8): e12083, 2010 Aug 18.
Article in English | MEDLINE | ID: mdl-20805870

ABSTRACT

We apply our recently developed information-theoretic measures for the characterisation and comparison of protein-protein interaction networks. These measures are used to quantify topological network features via macroscopic statistical properties. Network differences are assessed based on these macroscopic properties as opposed to microscopic overlap, homology information or motif occurrences. We present the results of a large-scale analysis of protein-protein interaction networks. Precise null models are used in our analyses, allowing for reliable interpretation of the results. By quantifying the methodological biases of the experimental data, we can define an information threshold above which networks may be deemed to comprise consistent macroscopic topological properties, despite their small microscopic overlaps. Based on this rationale, data from yeast-two-hybrid methods are sufficiently consistent to allow for intra-species comparisons (between different experiments) and inter-species comparisons, while data from affinity-purification mass-spectrometry methods show large differences even within intra-species comparisons.


Subject(s)
Computational Biology/methods , Proteins/metabolism , Animals , Cluster Analysis , Humans , Protein Binding , Species Specificity
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 2): 016114, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18764027

ABSTRACT

The entropy of a hierarchical network topology in an ensemble of sparse random networks, with "hidden variables" associated with its nodes, is the log-likelihood that a given network topology is present in the chosen ensemble. We obtain a general formula for this entropy, which has a clear interpretation in some simple limiting cases. The results provide keys with which to solve the general problem of "fitting" a given network with an appropriate ensemble of random networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...