Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Eur J Immunol ; 51(12): 3176-3185, 2021 12.
Article in English | MEDLINE | ID: mdl-34626426

ABSTRACT

The soluble cytoplasmic tail of CD45 (ct-CD45) is a cleavage fragment of CD45, that is generated during the activation of human phagocytes. Upon release to the extracellular space, ct-CD45 binds to human T cells and inhibits their activation in vitro. Here, we studied the potential role of TLR4 as a receptor for ct-CD45. Treatment of Jurkat TLR4/CD14 reporter cells with ct-CD45 induced the upregulation of the reporter gene NFκB-eGFP and could be blocked by inhibitors of TLR4 signaling. Conversely, ct-CD45 did not promote the NFκB-controlled eGFP induction in reporter cells expressing TLR1, TLR2, and TLR6 transgenes and did not lead to the activation of the transcription factors NFκB, AP-1, and NFAT in a Jurkat reporter cell line expressing endogenous TLR5. Moreover, ct-CD45 binds to recombinant TLR4 in an in vitro assay and this association was reduced in the presence of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine. Blockade of TLR4 with mAb HTA125 partially reversed the ct-CD45-mediated inhibition of T-cell proliferation. Interestingly, targeting of TLR4 with mAb W7C11 also suppressed T-cell proliferation. In summary, the results of this study demonstrate that ct-CD45 acts via a noncanonical TLR4 activation pathway on T cells, which modulates TCR signaling.


Subject(s)
Cell Proliferation , Leukocyte Common Antigens/immunology , Lymphocyte Activation , Signal Transduction/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 4/immunology , Humans , Jurkat Cells
2.
Mol Ther Methods Clin Dev ; 20: 95-108, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33376758

ABSTRACT

Adeno-associated viruses (AAVs) are emerging as one of the vehicles of choice for gene therapy. However, the potential immunogenicity of these vectors is a major limitation of their use, leading to the necessity of a better understanding of how viral vectors engage the innate immune system. In this study, we demonstrate the immune response mediated by an AAV vector in a mouse model. Mice were infected intravenously with 4 × 1012 copies (cp)/kg of AAV8, and the ensuing immune response was analyzed using intravital microscopy during a period of weeks. Administration of AAV8 resulted in the infection of hepatocytes, and this infection led to a moderate, but significant, activation of the immune system in the liver. This host immune response involved platelet aggregation, neutrophil extracellular trap (NET) formation, and the recruitment of monocytes, B cells, and T cells. The resident liver macrophage population, Kupffer cells, was necessary to initiate this immune response, as its depletion abrogated platelet aggregation and NET formation and delayed the recruitment of immune cells. Moreover, the death of liver cells produced by this AAV was moderate and failed to result in a robust, sustained inflammatory response. Altogether, these data suggest that AAV8 is a suitable vector for gene therapy approaches.

3.
PLoS One ; 10(2): e0113963, 2015.
Article in English | MEDLINE | ID: mdl-25719901

ABSTRACT

BACKGROUND: A novel avian H7N9 virus with a high case fatality rate in humans emerged in China in 2013. We evaluated the immunogenicity and protective efficacy of a candidate Vero cell culture-derived whole-virus H7N9 vaccine in small animal models. METHODS: Antibody responses induced in immunized DBA/2J mice and guinea pigs were evaluated by hemagglutination inhibition (HI), microneutralization (MN), and neuraminidase inhibition (NAi) assays. T-helper cell responses and IgG subclass responses in mice were analyzed by ELISPOT and ELISA, respectively. Vaccine efficacy against lethal challenge with wild-type H7N9 virus was evaluated in immunized mice. H7N9-specific antibody responses induced in mice and guinea pigs were compared to those induced by a licensed whole-virus pandemic H1N1 (H1N1pdm09) vaccine. RESULTS: The whole-virus H7N9 vaccine induced dose-dependent H7N9-specific HI, MN and NAi antibodies in mice and guinea pigs. Evaluation of T-helper cell responses and IgG subclasses indicated the induction of a balanced Th1/Th2 response. Immunized mice were protected against lethal H7N9 challenge in a dose-dependent manner. H7N9 and H1N1pdm09 vaccines were similarly immunogenic. CONCLUSIONS: The induction of H7N9-specific antibody and T cell responses and protection against lethal challenge suggest that the Vero cell culture-derived whole-virus vaccine would provide an effective intervention against the H7N9 virus.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Viral/immunology , Antibody Formation , Chlorocebus aethiops , Female , Guinea Pigs , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin G/analysis , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Interferon-gamma/analysis , Interleukin-4/analysis , Mice , Mice, Inbred DBA , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Vero Cells
4.
J Neurol Sci ; 347(1-2): 96-103, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25288328

ABSTRACT

PURPOSE: To compare Borrelia-specific intrathecal antibodies by two different ELISAs, an immunoblot (IB) and CXCL13. METHODS: Twenty-seven adults and 23 children with clinical symptoms compatible with NB were tested for Borrelia-specific intrathecal antibodies by flagellum ELISA-AI (flELISA), a recombinant ELISA-AI (rELISA) and by IB. Patients were classified according to the European Federation of Neurological Societies (EFNS) criteria as definite NB, possible NB, or non-NB. CSF CXCL13 levels were measured by ELISA. RESULTS: Among 50 patients, definite NB was diagnosed with the rELISA-AI in 29 (58%) patients, confirmed by IB in 19/29 patients, with flELISA-AI in 17 (34%) patients, confirmed by IB in 15/17 patients, and with IB in 20 (40%) patients. CXCL13 was positive in 22 (44%) patients. In 4 of 8 patients with negative AI, IB showed many detectable bands both in the CSF and serum. CONCLUSIONS: The diagnosis of NB strongly relies on the used test method. The rELISA-AI test appears to be the most sensitive while the flELISA-AI is the least sensitive. However when the ELISA-AIs were confirmed by IB, different patients were identified as NB, while only 26% were identified by all performed test methods. There is a demand for standardized test methods with well-defined sensitivity and specificity to establish validated diagnostic criteria for NB including the use of the IB assay and CXCL13 as an additional non-Borrelia specific determinant in early NB.


Subject(s)
Borrelia burgdorferi/immunology , Chemokine CXCL13/cerebrospinal fluid , Enzyme-Linked Immunosorbent Assay , Lyme Neuroborreliosis/diagnosis , Lyme Neuroborreliosis/immunology , Adolescent , Adult , Aged , Child , Diagnosis, Differential , Female , Humans , Lyme Neuroborreliosis/cerebrospinal fluid , Male , Middle Aged , Predictive Value of Tests , Sensitivity and Specificity , Young Adult
5.
Clin Vaccine Immunol ; 21(11): 1490-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25185574

ABSTRACT

Lyme borreliosis (LB) patients who recover, as well as previously infected asymptomatic individuals, remain vulnerable to reinfection with Borrelia burgdorferi sensu lato. There is limited information available about the use of OspA vaccines in this population. In this study, a randomized double-blind phase I/II trial was performed to investigate the safety and immunogenicity of a novel multivalent OspA vaccine in healthy adults who were either seronegative or seropositive for previous B. burgdorferi sensu lato infection. The participants received three monthly priming immunizations with either 30 µg or 60 µg alum-adjuvanted OspA antigen and a booster vaccination either 6 months or 9 to 12 months after the first immunization. The antibody responses to the six OspA serotypes included in the vaccine were evaluated. Adverse events were predominantly mild and transient and were similar in the seronegative and seropositive populations. Substantial enzyme-linked immunosorbent assay (ELISA) and surface-binding antibody responses against all six OspA antigens were induced after the primary immunization schedule in both populations, and they were substantially increased with both booster schedules. The antibody responses induced by the two doses were similar in the seronegative population, but there was a significant dose response in the seropositive population. These data indicate that the novel multivalent OspA vaccine is well tolerated and immunogenic in individuals previously infected with B. burgdorferi sensu lato. (This study is registered at ClinicalTrials.gov under registration no. NCT01504347.).


Subject(s)
Antigens, Surface/adverse effects , Antigens, Surface/immunology , Bacterial Outer Membrane Proteins/adverse effects , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/adverse effects , Bacterial Vaccines/immunology , Borrelia burgdorferi Group/immunology , Lipoproteins/adverse effects , Lipoproteins/immunology , Lyme Disease/immunology , Lyme Disease/prevention & control , Vaccination/adverse effects , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Aged , Alum Compounds/administration & dosage , Antibodies, Bacterial/blood , Antigens, Surface/administration & dosage , Bacterial Outer Membrane Proteins/administration & dosage , Bacterial Vaccines/administration & dosage , Double-Blind Method , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Lipoproteins/administration & dosage , Male , Middle Aged , Young Adult
6.
Clin Vaccine Immunol ; 21(6): 867-76, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24739978

ABSTRACT

The development of vaccines against H5N1 influenza A viruses is a cornerstone of pandemic preparedness. Clinical trials of H5N1 vaccines have been undertaken in healthy subjects, but studies in risk groups have been lacking. In this study, the immunogenicity and safety of a nonadjuvanted cell culture-derived whole-virus H5N1 vaccine were assessed in chronically ill and immunocompromised adults. Subjects received two priming immunizations with a clade 1 A/Vietnam H5N1 influenza vaccine, and a subset also received a booster immunization with a clade 2.1 A/Indonesia H5N1 vaccine 12 to 24 months later. The antibody responses in the two populations were assessed by virus neutralization and single radial hemolysis assays. The T-cell responses in a subset of immunocompromised patients were assessed by enzyme-linked immunosorbent spot assay (ELISPOT). The priming and the booster vaccinations were safe and well tolerated in the two risk populations, and adverse reactions were predominantly mild and transient. The priming immunizations induced neutralizing antibody titers of ≥1:20 against the A/Vietnam strain in 64.2% of the chronically ill and 41.5% of the immunocompromised subjects. After the booster vaccination, neutralizing antibody titers of ≥1:20 against the A/Vietnam and A/Indonesia strains were achieved in 77.5% and 70.8%, respectively, of chronically ill subjects and in 71.6% and 67.5%, respectively, of immunocompromised subjects. The T-cell responses against the two H5N1 strains increased significantly over the baseline values. Substantial heterosubtypic T-cell responses were elicited against the 2009 pandemic H1N1 virus and seasonal A(H1N1), A(H3N2), and B subtypes. There was a significant correlation between T-cell responses and neutralizing antibody titers. These data indicate that nonadjuvanted whole-virus cell culture-derived H5N1 influenza vaccines are suitable for immunizing chronically ill and immunocompromised populations. (This study is registered at ClinicalTrials.gov under registration no. NCT00711295.).


Subject(s)
Immunocompromised Host/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Formation/immunology , Cell Line , Chlorocebus aethiops , Chronic Disease , Cross Reactions/immunology , Female , Hemagglutination Inhibition Tests , Humans , Immunization, Secondary , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Lymphocyte Activation/immunology , Male , Middle Aged , T-Lymphocytes/immunology , Vaccination , Vero Cells
7.
PLoS One ; 9(2): e88340, 2014.
Article in English | MEDLINE | ID: mdl-24523886

ABSTRACT

BACKGROUND: The availability of a universal influenza vaccine able to induce broad cross-reactive immune responses against diverse influenza viruses would provide an alternative to currently available strain-specific vaccines. We evaluated the ability of vectors based on modified vaccinia virus Ankara (MVA) expressing conserved influenza proteins to protect mice against lethal challenge with multiple influenza subtypes. METHODS: Mice were immunized with MVA vectors expressing H5N1-derived nucleoprotein (NP), the stem region of hemagglutinin (HA), matrix proteins 1 and 2 (M1 and M2), the viral polymerase basic protein 1 (PB1), or the HA stem fused to a quadrivalent matrix protein 2 extracellular domain (M2e). Immunized mice were challenged with lethal doses of H5N1, H7N1 or H9N2 virus and monitored for disease symptoms and weight loss. To investigate the influence of previous exposure to influenza virus on protective immune responses induced by conserved influenza proteins, mice were infected with pandemic H1N1 virus (H1N1pdm09) prior to immunization and subsequently challenged with H5N1 virus. Antibody and T cell responses were assessed by ELISA and flow cytometry, respectively. RESULTS: MVA vectors expressing NP alone, or co-expressed with other conserved influenza proteins, protected mice against lethal challenge with H5N1, H7N1 or H9N2 virus. Pre-exposure to H1N1pdm09 increased protective efficacy against lethal H5N1 challenge. None of the other conserved influenza proteins provided significant levels of protection against lethal challenge. NP-expressing vectors induced high numbers of influenza-specific CD4(+) and CD8(+) T cells and high titer influenza-specific antibody responses. Higher influenza-specific CD4(+) T cell responses and NP-specific CD8(+) T cell responses were associated with increased protective efficacy. CONCLUSIONS: MVA vectors expressing influenza NP protect mice against lethal challenge with H5N1, H7N1 and H9N2 viruses by a mechanism involving influenza-specific CD4(+) and CD8(+) T cell responses.


Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H7N1 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Vaccinia virus/immunology , Animals , Enzyme-Linked Immunosorbent Assay , Female , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/virology , T-Lymphocytes/immunology
9.
PLoS One ; 8(11): e79022, 2013.
Article in English | MEDLINE | ID: mdl-24260146

ABSTRACT

BACKGROUND: For clinical development of a novel multivalent OspA vaccine against Lyme borreliosis, serological assays are required which can be used to establish immune correlates of protection against infection with Borrelia. METHODS: Four assays (an OspA IgG ELISA, a competitive inhibition (CI) ELISA, a Borrelia surface-binding (SB) assay and a Borrelia killing assay) were used to evaluate the correlation between immune responses induced by rOspA 1/2 (a chimeric immunogen containing protective epitopes from OspA serotypes 1 and 2), and protective immunity against infection by B. burgdorferi s.s. (OspA-1) and B. afzelii (OspA-2). Mice were immunized with OspA 1/2 doses ranging from 0.3 ng to 100 ng, to induce a range of OspA antibody titers, and exposed to needle challenge with B. burgdorferi s.s. or tick challenge with B. afzelii. Receiver operator characteristics (ROC) curves were constructed for each assay, and the area under the curve (AUC), sensitivity, specificity and Youden Index were calculated. Potential cutoff antibody titers which could be used as correlates of vaccine-induced protection were derived from the maximum Youden Index. RESULTS: Immunization with OspA-1/2 provided dose-dependent protection against infection with B. burgdorferi s.s. and B. afzelii. Antibody responses detected by all four assays were highly significantly correlated with protection from infection by either B. burgdorferi s.s. (p<0.0001 to 0.0062) or B. afzelii (p<0.0001). ROC analyses of the diagnostic effectiveness of each assay showed the AUC to range between 0.95 and 0.79, demonstrating that all assays distinguish well between infected and non-infected animals. Based on sensitivity, specificity and AUC, the OspA IgG ELISA and SB assays best discriminated between infected and non-infected animals. CONCLUSIONS: All four assays differentiate well between Borrelia-infected and non-infected animals. The relatively simple, high throughput IgG ELISA would be suitable to establish immune correlates of protection for the novel OspA vaccine in clinical trials.


Subject(s)
Antigens, Surface/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Borrelia burgdorferi/immunology , Lipoproteins/immunology , Lyme Disease Vaccines/immunology , Lyme Disease/prevention & control , Animals , Antibodies, Bacterial/immunology , Disease Models, Animal , Dose-Response Relationship, Immunologic , Female , Immunoglobulin G/immunology , Lyme Disease/immunology , Mice , Vaccination
10.
Hum Vaccin Immunother ; 9(6): 1333-45, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23857272

ABSTRACT

Increasing the potency and supply of seasonal and pandemic influenza vaccines remains an important unmet medical need which may be effectively accomplished with adjuvanted egg- or cell culture-derived vaccines. Vaxfectin, a cationic lipid-based adjuvant with a favorable safety profile in phase 1 plasmid DNA vaccines trials, was tested in combination with seasonal split, trivalent and pandemic whole virus, monovalent influenza vaccines produced in Vero cell cultures. Comparison of hemagglutination inhibition (HI) antibody titers in Vaxfectin-adjuvanted to nonadjuvanted vaccinated mice and guinea pigs revealed 3- to 20-fold increases in antibody titers against each of the trivalent influenza virus vaccine strains and 2- to 8-fold increases in antibody titers against the monovalent H5N1 influenza virus vaccine strain. With the vaccine doses tested, comparable antibody responses were induced with formulations that were freshly prepared or refrigerated at conventional 2-8°C storage conditions for up to 6 mo. Comparison of T-cell frequencies measured by interferon-gamma ELISPOT assay between groups revealed increases of between 2- to 10-fold for each of the adjuvanted trivalent strains and up to 22-fold higher with monovalent H5N1 strain. Both trivalent and monovalent vaccines were easy to formulate with Vaxfectin by simple mixing. These preclinical data support further testing of Vaxfectin-adjuvanted Vero cell culture vaccines toward clinical studies designed to assess safety and immunogenicity of these vaccines in humans.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Influenza A virus/immunology , Influenza Vaccines/immunology , Phosphatidylethanolamines/administration & dosage , Animals , Antibodies, Viral/blood , Female , Guinea Pigs , Hemagglutination Inhibition Tests , Influenza Vaccines/administration & dosage , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , T-Lymphocytes/immunology , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
11.
Lancet Infect Dis ; 13(8): 680-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23665341

ABSTRACT

BACKGROUND: Lyme borreliosis is caused by Borrelia burgdorferi sensu stricto in the USA and by several Borrelia species in Europe and Asia, but no human vaccine is available. We investigated the safety and immunogenicity of adjuvanted and non-adjuvanted vaccines containing protective epitopes from Borrelia species outer surface protein A (OspA) serotypes in healthy adults. METHODS: Between March 1, 2011, and May 8, 2012, we did a double-blind, randomised, dose-escalation phase 1/2 study at four sites in Austria and Germany. Healthy adults aged 18-70 years who were seronegative for B. burgdorferi sensu lato were eligible for inclusion. Participants were recruited sequentially and randomly assigned to one of six study groups in equal ratios via an electronic data capture system. Participants and investigators were masked to group allocation. Participants received three vaccinations containing 30 µg, 60 µg, or 90 µg OspA antigen with or without an adjuvant, with intervals of 28 days, and a booster 9-12 months after the first immunisation. The coprimary endpoints were the frequency and severity of injection-site and systemic reactions within 7 days of each vaccination, and the antibody responses to OspA serotypes 1-6, as established by ELISA. This study is registered with ClinicalTrials.gov, number NCT01504347. FINDINGS: 300 participants were randomly assigned: 151 to adjuvanted vaccines (50 to 30 µg, 51 to 60 µg, and 50 to 90 µg doses), and 149 to non-adjuvanted vaccines (50 to 30 µg, 49 to 60 µg, and 50 to 90 µg doses). Adverse reactions were predominantly mild, and no vaccine-related serious adverse events were reported. The risk of systemic reactions (risk ratio 0·54 [95% CI 0·41-0·70]; p<0·0001) and of moderate or severe systemic reactions (0·35 [0·13-0·92]; p=0·034) was significantly lower for adjuvanted than non-adjuvanted formulations. The 30 µg adjuvanted formulation had the best tolerability profile; only headache (five [10%, 95% CI 4-20] of 50), injection-site pain (16 [32%, 21-45]), and tenderness (17 [34%, 23-47]) affected more than 6% of patients. All doses and formulations induced substantial mean IgG antibody titres against OspA serotypes 1-6 after the first three vaccinations (range 6944-17,321) and booster (19,056-32,824) immunisations. The 30 µg adjuvanted formulation induced the highest antibody titres after the booster: range 26,143 (95% CI 18,906-36,151) to 42,381 (31,288-57,407). INTERPRETATION: The novel multivalent OspA vaccine could be an effective intervention for prevention of Lyme borreliosis in Europe and the USA, and possibly worldwide. Larger confirmatory formulation studies will need to be done that include individuals seropositive for Borrelia burgdorferi sensu lato before placebo-controlled phase 3 efficacy studies can begin. FUNDING: Baxter.


Subject(s)
Adjuvants, Immunologic/adverse effects , Antigens, Surface/adverse effects , Antigens, Surface/immunology , Bacterial Outer Membrane Proteins/adverse effects , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/adverse effects , Bacterial Vaccines/immunology , Borrelia burgdorferi/immunology , Lipoproteins/adverse effects , Lipoproteins/immunology , Lyme Disease Vaccines/adverse effects , Lyme Disease Vaccines/immunology , Adult , Double-Blind Method , Female , Headache/chemically induced , Humans , Immunoglobulin G/blood , Male , Middle Aged , Pain/chemically induced , Young Adult
12.
Vaccine ; 30(37): 5533-40, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22749797

ABSTRACT

BACKGROUND: Preparation for an H5N1 influenza pandemic in humans could include priming the population in the pre-pandemic period with a vaccine produced from an existing H5N1 vaccine strain, with the possibility of boosting with a pandemic virus vaccine when it becomes available. We investigated the longevity of the immune response after one or two priming immunizations with a whole-virus H5N1 vaccine and the extent to which this can be boosted by later immunization with either a homologous or heterologous vaccine. METHODS: Mice received one or two priming immunizations with a Vero cell culture-derived, whole-virus clade 1 H5N1 vaccine formulated to contain either 750 ng or 30 ng hemagglutinin. Six months after the first priming immunization, mice received either a booster immunization with the same clade 1 vaccine or a heterologous clade 2.1 vaccine, or buffer. Humoral and cellular immune responses were evaluated before and at regular intervals after immunizations. Three weeks after booster immunization, mice were challenged with a lethal dose of wild-type H5N1 virus from clades 1, 2.1 or 2.2 and survival was monitored for 14 days. RESULTS: One or two priming immunizations with the 750 ng or 30 ng HA formulations, respectively, induced H5N1-neutralizing antibody titers which were maintained for ≥ 6 months and provided long-term cross-clade protection against wild-type virus challenge. Both humoral and cellular immune responses were substantially increased by a booster immunization after 6 months. The broadest protective immunity was provided by an immunization regimen consisting of one or two priming immunizations with a clade 1 vaccine and a boosting immunization with a clade 2.1 vaccine. CONCLUSIONS: These data support the concept that pre-pandemic vaccination can provide robust and long-lasting H5N1 immunity which could be effectively boosted by immunization either with another pre-pandemic vaccine or with the pandemic strain vaccine.


Subject(s)
Immunization, Secondary , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Animals , Antibodies, Heterophile , Antibodies, Neutralizing , Chlorocebus aethiops , Cross Reactions/immunology , Dose-Response Relationship, Immunologic , Female , Immunity, Cellular/immunology , Immunity, Humoral , Immunization Schedule , Influenza A Virus, H5N1 Subtype/pathogenicity , Mice , Vero Cells/virology
13.
PLoS One ; 6(9): e24505, 2011.
Article in English | MEDLINE | ID: mdl-21931732

ABSTRACT

BACKGROUND: Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. METHODOLOGY/PRINCIPAL FINDINGS: A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5) TCID(50). Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. CONCLUSIONS/SIGNIFICANCE: The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.


Subject(s)
Vaccinia virus/metabolism , Viral Vaccines/therapeutic use , Yellow Fever Vaccine/therapeutic use , Yellow Fever/prevention & control , Animals , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Chlorocebus aethiops , HeLa Cells , Humans , Immune System , Mice , Mice, Inbred BALB C , Plasmids/metabolism , Vaccines, Attenuated/therapeutic use , Vero Cells , Viral Envelope Proteins/chemistry
14.
PLoS One ; 6(1): e16247, 2011 Jan 24.
Article in English | MEDLINE | ID: mdl-21283631

ABSTRACT

BACKGROUND: New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine. METHODOLOGY/PRINCIPAL FINDINGS: The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades. CONCLUSIONS/SIGNIFICANCE: The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine.


Subject(s)
Cross Protection/genetics , Genetic Vectors , Hemagglutinins/biosynthesis , Influenza A Virus, H5N1 Subtype/chemistry , Vaccines/immunology , Vaccinia virus/genetics , Animals , Humans , Mice , Species Specificity , Vaccination
15.
Clin Infect Dis ; 52 Suppl 3: s266-70, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21217174

ABSTRACT

A single recombinant outer surface protein A (OspA) antigen designed to contain protective elements from 2 different OspA serotypes (1 and 2) is able to induce antibody responses that protect mice against infection with either Borrelia burgdorferi sensu stricto (OspA serotype-1) or Borrelia afzelii (OspA serotype-2). Protection against infection with B burgdorferi ss strain ZS7 was demonstrated in a needle-challenge model. Protection against B. afzelii species was shown in a tick-challenge model using feral ticks. In both models, as little as .03 µg of antigen, when administered in a 2-dose immunization schedule with aluminum hydroxide as adjuvant, was sufficient to provide complete protection against the species targeted. This proof of principle study proves that knowledge of protective epitopes can be used for the rational design of effective, genetically modified vaccines requiring fewer OspA antigens and suggests that this approach may facilitate the development of an OspA vaccine for global use.


Subject(s)
Antigens, Surface/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Borrelia burgdorferi/immunology , Lipoproteins/immunology , Lyme Disease Vaccines/immunology , Lyme Disease/immunology , Lyme Disease/prevention & control , Ticks/immunology , Animals , Antibodies, Bacterial/immunology , Borrelia burgdorferi Group/immunology , Epitopes/immunology , Mice , Mice, Inbred C3H , Models, Animal , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use
16.
Vaccine ; 29(2): 166-73, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21055500

ABSTRACT

In the present study the homologous and heterologous type and subtype specific cellular immune response induced by a wild type inactivated whole virus H5N1 Influenza (A/Vietnam/1203/2004) vaccine was evaluated. Two immunizations with the Vero cell derived H5N1 influenza vaccine on Day 0 and Day 21 induced significant H5N1 vaccine specific and H5 haemagglutinin specific clade and cross-clade reactive CD4(+) T cell responses, which were maintained at significant levels for at least 6 months. The H5N1 vaccine specific response cross-reacted with the H1N1, but not with H3N2 or B seasonal Influenza strains. The vaccine significantly increased the number of H5N1 specific and H5 haemagglutinin specific memory B cells, 6 months after the primary immunization, however no H1N1 specific cross-reactivity was observed. Importantly, the inactivated whole virus H5N1 vaccine was just as effective in inducing CD4(+) T cell and memory B cell response in the elderly (60 years or over) as in the adult population (18-59 years).


Subject(s)
Immunity, Cellular , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Pandemics/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Chlorocebus aethiops , Cross Reactions , Humans , Immunization, Secondary/methods , Immunologic Memory , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza Vaccines/administration & dosage , Middle Aged , Vaccination/methods , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Vero Cells , Young Adult
17.
PLoS One ; 5(8): e12217, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20808939

ABSTRACT

BACKGROUND: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE: The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza.


Subject(s)
Disease Outbreaks , Immunization, Passive/methods , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccination/methods , Animals , Antibody Formation/immunology , Antibody Specificity/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cross Reactions/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunocompetence/immunology , Lung/immunology , Mice , Neuraminidase/immunology , Spleen/immunology , Vaccines, Attenuated/immunology
18.
PLoS One ; 5(2): e9349, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20186321

ABSTRACT

The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Vaccination/methods , Viral Vaccines/immunology , Animals , Disease Models, Animal , Disease Outbreaks , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred BALB C , Mice, SCID , Orthomyxoviridae Infections/prevention & control , Swine/virology , Th1 Cells/immunology , Th2 Cells/immunology , Treatment Outcome , Viral Vaccines/administration & dosage , Viremia/immunology , Viremia/prevention & control
19.
Vaccine ; 28(7): 1778-85, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20018265

ABSTRACT

Recent findings indicate that seasonal influenza vaccination or infection of healthy humans may contribute to heterosubtypic immunity against new influenza A subtypes, such as H5N1. Here, we investigated whether seasonal influenza vaccination in a mouse model could induce any immunity against the H5N1 subtype. It could be demonstrated that, largely due to the H1N1 component strain A/NewCaledonia/20/99, parenteral immunization of mice with a trivalent seasonal influenza vaccine elicited heterosubtype H5-reactive antibodies able to confer partial protection against H5N1 influenza virus infection. Furthermore, the trivalent seasonal influenza vaccine was found to be compatible with a whole virus H5N1 vaccine in a heterologous prime-boost immunization regimen, achieving superior efficacy compared to a single immunization with an equivalent low-dose of the H5N1 vaccine.


Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Viral/immunology , Antibody Specificity , Cross Reactions/immunology , Female , Immunity, Cellular , Immunity, Humoral , Immunization, Passive , Immunization, Secondary , Influenza Vaccines/administration & dosage , Interferon-gamma/immunology , Interleukin-4/immunology , Mice , Neutralization Tests , Orthomyxoviridae Infections/immunology
20.
J Virol ; 83(10): 5192-203, 2009 May.
Article in English | MEDLINE | ID: mdl-19279103

ABSTRACT

The timely development of safe and effective vaccines against avian influenza virus of the H5N1 subtype will be of the utmost importance in the event of a pandemic. Our aim was first to develop a safe live vaccine which induces both humoral and cell-mediated immune responses against human H5N1 influenza viruses and second, since the supply of embryonated eggs for traditional influenza vaccine production may be endangered in a pandemic, an egg-independent production procedure based on a permanent cell line. In the present article, the generation of a complementing Vero cell line suitable for the production of safe poxviral vaccines is described. This cell line was used to produce a replication-deficient vaccinia virus vector H5N1 live vaccine, dVV-HA5, expressing the hemagglutinin of a virulent clade 1 H5N1 strain. This experimental vaccine was compared with a formalin-inactivated whole-virus vaccine based on the same clade and with different replicating poxvirus-vectored vaccines. Mice were immunized to assess protective immunity after high-dose challenge with the highly virulent A/Vietnam/1203/2004(H5N1) strain. A single dose of the defective live vaccine induced complete protection from lethal homologous virus challenge and also full cross-protection against clade 0 and 2 challenge viruses. Neutralizing antibody levels were comparable to those induced by the inactivated vaccine. Unlike the whole-virus vaccine, the dVV-HA5 vaccine induced substantial amounts of gamma interferon-secreting CD8 T cells. Thus, the nonreplicating recombinant vaccinia virus vectors are promising vaccine candidates that induce a broad immune response and can be produced in an egg-independent and adjuvant-independent manner in a proven vector system.


Subject(s)
Genetic Vectors , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Chlorocebus aethiops , Defective Viruses/genetics , Female , Influenza A Virus, H5N1 Subtype/genetics , Interferon-gamma/analysis , Mice , Mice, Inbred BALB C , Mice, Nude , Orthomyxoviridae Infections/immunology , Vaccinia virus/genetics , Vero Cells , Virus Cultivation
SELECTION OF CITATIONS
SEARCH DETAIL
...