Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cell Dev Biol ; 146: 70-79, 2023 09 15.
Article in English | MEDLINE | ID: mdl-36604249

ABSTRACT

Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of eIF5A. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.


Subject(s)
Host Microbial Interactions , Polyamines , Virus Diseases , Virus Replication , Viruses , Humans , Adaptive Immunity , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Eflornithine/pharmacology , Host Microbial Interactions/immunology , Polyamines/antagonists & inhibitors , Polyamines/metabolism , Virus Diseases/metabolism , Virus Diseases/virology , Viruses/metabolism , Protein Processing, Post-Translational , Lysine , Eukaryotic Translation Initiation Factor 5A
2.
ACS Infect Dis ; 8(8): 1439-1448, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35786847

ABSTRACT

Viruses rely on an array of cellular metabolites to replicate and form progeny virions. One set of these molecules, polyamines, are small aliphatic molecules, which are abundant in most cells, that support virus infection; however, the precise roles of polyamines in virus infection remain incompletely understood. Recent work demonstrated that polyamine metabolism supports cellular cholesterol synthesis through translation of the key transcription factor SREBP2. Here, we show that the bunyavirus Rift Valley fever virus (RVFV) relies on both cholesterol and polyamines for virus infection. Depletion of cellular cholesterol or interruption of cholesterol trafficking negatively impacts RVFV infection. Cholesterol is incorporated into RVFV virions and mediates their infectivity in a polyamine-dependent manner; we find that the virus derived from polyamine-depleted cells lacks cholesterol within the virion membrane. Conversely, we find that virion-associated cholesterol is linked to the incorporation of spermidine within the virion. Our prior work demonstrated that polyamines facilitate pH-mediated fusion and genome release, which may be a consequence of cholesterol depletion within virions. Thus, our work highlights the metabolic connection between polyamines and cholesterol synthesis to impact bunyavirus infection. These data demonstrate the connectedness between cellular metabolic pathways and reveal potential avenues of therapeutic intervention.


Subject(s)
Rift Valley fever virus , Animals , Cholesterol , Polyamines , Rift Valley fever virus/genetics , Virion/genetics
3.
Antimicrob Agents Chemother ; 66(6): e0029222, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35652314

ABSTRACT

Identifying novel antivirals requires significant time and resource investment, and the continuous threat of viruses to human health necessitates commitment to antiviral identification and development. Developing antivirals requires years of research and validation, and recent outbreaks have highlighted the need for preparedness in counteracting pandemics. One way to facilitate development is to repurpose molecules already used clinically. By screening such compounds, we can accelerate antiviral development. Here, we screened compounds from the National Institutes of Health's Developmental Therapeutic Program for activity against chikungunya virus, an alphavirus that is responsible for a significant outbreak in the Americas in 2013. Using this library, we identified several compounds with known antiviral activity, as well as several novel antivirals. Given its favorable in vitro activity and well-described in vivo activity, as well as its broad availability, we focused on bisacodyl, a laxative used for the treatment of constipation, for follow-up studies. We find that bisacodyl inhibits chikungunya virus infection in a variety of cell types, over a range of concentrations, and over several rounds of replication. We find that bisacodyl does not disrupt chikungunya virus particles or interfere with their ability to attach to cells, but, instead, bisacodyl inhibits virus replication. Finally, we find that bisacodyl is broadly antiviral against a variety of RNA viruses, including enteroviruses, flaviviruses, bunyaviruses, and alphaviruses; however, it exhibited no activity against the DNA virus vaccinia virus. Together, these data highlight the power of compound screening to identify novel antivirals and suggest that bisacodyl may hold promise as a broad-spectrum antiviral.


Subject(s)
Chikungunya Fever , Chikungunya virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bisacodyl/pharmacology , Bisacodyl/therapeutic use , Chikungunya Fever/drug therapy , Humans , Virus Replication
4.
Viruses ; 14(2)2022 02 10.
Article in English | MEDLINE | ID: mdl-35215962

ABSTRACT

Understanding the magnitude of responses to vaccination during the ongoing SARS-CoV-2 pandemic is essential for ultimate mitigation of the disease. Here, we describe a cohort of 102 subjects (70 COVID-19-naïve, 32 COVID-19-experienced) who received two doses of one of the mRNA vaccines (BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)). We document that a single exposure to antigen via infection or vaccination induces a variable antibody response which is affected by age, gender, race, and co-morbidities. In response to a second antigen dose, both COVID-19-naïve and experienced subjects exhibited elevated levels of anti-spike and SARS-CoV-2 neutralizing activity; however, COVID-19-experienced individuals achieved higher antibody levels and neutralization activity as a group. The COVID-19-experienced subjects exhibited no significant increase in antibody or neutralization titer in response to the second vaccine dose (i.e., third antigen exposure). Finally, we found that COVID-19-naïve individuals who received the Moderna vaccine exhibited a more robust boost response to the second vaccine dose (p = 0.004) as compared to the response to Pfizer-BioNTech. Ongoing studies with this cohort will continue to contribute to our understanding of the range and durability of responses to SARS-CoV-2 mRNA vaccines.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/blood , BNT162 Vaccine/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adult , Antibodies, Viral/immunology , Antibody Formation , BNT162 Vaccine/administration & dosage , COVID-19/immunology , Cohort Studies , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged
5.
J Infect Dis ; 222(1): 158-168, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32052021

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is the leading cause of childhood acquired heart disease in developed nations and can result in coronary artery aneurysms and death. Clinical and epidemiologic features implicate an infectious cause but specific antigenic targets of the disease are unknown. Peripheral blood plasmablasts are normally highly clonally diverse but the antibodies they encode are approximately 70% antigen-specific 1-2 weeks after infection. METHODS: We isolated single peripheral blood plasmablasts from children with KD 1-3 weeks after onset and prepared 60 monoclonal antibodies (mAbs). We used the mAbs to identify their target antigens and assessed serologic response among KD patients and controls to specific antigen. RESULTS: Thirty-two mAbs from 9 of 11 patients recognize antigen within intracytoplasmic inclusion bodies in ciliated bronchial epithelial cells of fatal cases. Five of these mAbs, from 3 patients with coronary aneurysms, recognize a specific peptide, which blocks binding to inclusion bodies. Sera from 5/8 KD patients day ≥ 8 after illness onset, compared with 0/17 infant controls (P < .01), recognized the KD peptide antigen. CONCLUSIONS: These results identify a protein epitope targeted by the antibody response to KD and provide a means to elucidate the pathogenesis of this important worldwide pediatric problem.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Formation/genetics , Blood Cells/immunology , Epitopes/immunology , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Female , Humans , Infant , Male , Mucocutaneous Lymph Node Syndrome/epidemiology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL