Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 139(18): 2770-2781, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35226739

ABSTRACT

Small ubiquitin-like modifier (SUMO) is a member of a ubiquitin-like protein superfamily. SUMOylation is a reversible posttranslational modification that has been implicated in the regulation of various cellular processes including inflammatory responses and expression of type 1 interferons (IFN1). In this report, we have explored the activity of the selective small molecule SUMOylation inhibitor subasumstat (TAK-981) in promoting antitumor innate immune responses. We demonstrate that treatment with TAK-981 results in IFN1-dependent macrophage and natural killer (NK) cell activation, promoting macrophage phagocytosis and NK cell cytotoxicity in ex vivo assays. Furthermore, pretreatment with TAK-981 enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells in combination with the anti-CD20 antibody rituximab. In vivo studies demonstrated enhanced antitumor activity of TAK-981 and rituximab in CD20+ lymphoma xenograft models. Combination of TAK-981 with anti-CD38 antibody daratumumab also resulted in enhanced antitumor activity. TAK-981 is currently being studied in phase 1 clinical trials (#NCT03648372, #NCT04074330, #NCT04776018, and #NCT04381650; www.clinicaltrials.gov) for the treatment of patients with lymphomas and solid tumors.


Subject(s)
Lymphoma , Sumoylation , Antibody-Dependent Cell Cytotoxicity , Antigens, CD20 , Cell Line, Tumor , Humans , Killer Cells, Natural , Lymphoma/drug therapy , Lymphoma/metabolism , Macrophages/metabolism , Rituximab/metabolism , Rituximab/pharmacology , Rituximab/therapeutic use
2.
Mol Cancer Ther ; 19(10): 2079-2088, 2020 10.
Article in English | MEDLINE | ID: mdl-32788205

ABSTRACT

Guanylyl cyclase C (GCC) is a unique therapeutic target with expression restricted to the apical side of epithelial cell tight junctions thought to be only accessible by intravenously administered agents on malignant tissues where GCC expression is aberrant. In this study, we sought to evaluate the therapeutic potential of a second-generation investigational antibody-dug conjugate (ADC), TAK-164, comprised of a human anti-GCC mAb conjugated via a peptide linker to the highly cytotoxic DNA alkylator, DGN549. The in vitro binding, payload release, and in vitro activity of TAK-164 was characterized motivating in vivo evaluation. The efficacy of TAK-164 and the relationship to exposure, pharmacodynamic marker activation, and biodistribution was evaluated in xenograft models and primary human tumor xenograft (PHTX) models. We demonstrate TAK-164 selectively binds to, is internalized by, and has potent cytotoxic effects against GCC-expressing cells in vitro A single intravenous administration of TAK-164 (0.76 mg/kg) resulted in significant growth rate inhibition in PHTX models of metastatic colorectal cancer. Furthermore, imaging studies characterized TAK-164 uptake and activity and showed positive relationships between GCC expression and tumor uptake which correlated with antitumor activity. Collectively, our data suggest that TAK-164 is highly active in multiple GCC-positive tumors including those refractory to TAK-264, a GCC-targeted auristatin ADC. A strong relationship between uptake of 89Zr-labeled TAK-164, levels of GCC expression and, most notably, response to TAK-164 therapy in GCC-expressing xenografts and PHTX models. These data supported the clinical development of TAK-164 as part of a first-in-human clinical trial (NCT03449030).


Subject(s)
Immunoconjugates/therapeutic use , Animals , Female , HEK293 Cells , Humans , Immunoconjugates/pharmacology , Mice , Mice, Nude , Tissue Distribution , Xenograft Model Antitumor Assays
3.
Appl Radiat Isot ; 140: 333-341, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30138815

ABSTRACT

In the present study, the effect of radiolabeling conditions on radiolabeling efficiency and achievable specific activity of a DOTA-conjugated highly-lipophilic peptide containing three disulfide cyclization bonds was examined. The peptide is designed to bind specifically (with high affinity) to cell-surface receptor guanylyl cyclase C (GCC), which is universally expressed by colorectal cancer cells. The effect of systematic variation of chemical parameters pH, mass of peptide, acetate buffer concentration (ionic strength), and inclusion of ethanol in the radiolabeling reaction vessel on achievable specific activity and labeling efficiency was examined. In addition, a unique approach to acetone-based elution of 68Ga from an initial cation-exchange pre-concentration column is introduced, which improved radiochemical yield and radiochemical purity. For the evaluation of the acetone-based method, two different post-radiolabeling reverse-phase (C18) approaches to purify the final radiolabeled peptide were tested. These results revealed the potential for peptide degradation via the cleavage of disulfide cyclization bonds to form free thiols when using one of these C18 cartridges. The final optimized procedure enabled radiolabeling efficiency of greater than 99% and specific activity greater than 35 MBq/nmole in less than 30 min. The optimized parameters were amenable to the use of an automated 68Ge/68Ga generator and fluid-handling system for clinical production of the GCC receptor-specific [68Ga]DOTA-MLN6907 peptide. The chemical characteristics of individual peptides govern the most appropriate radiolabeling conditions for the preparation of radiopharmaceuticals.


Subject(s)
Gallium Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Chelating Agents/chemistry , Colorectal Neoplasms/diagnostic imaging , Humans , Peptides/pharmacokinetics , Positron-Emission Tomography , Radiochemistry/methods , Radiopharmaceuticals/pharmacokinetics , Receptors, Enterotoxin/metabolism
4.
J Nucl Med ; 59(9): 1461-1466, 2018 09.
Article in English | MEDLINE | ID: mdl-29728518

ABSTRACT

In vitro properties of antibody-drug conjugates (ADCs) such as binding, internalization, and cytotoxicity are often well characterized before in vivo studies. Interpretation of in vivo studies might be significantly enhanced by molecular imaging tools. We present here a dual-isotope cryoimaging quantitative autoradiography (CIQA) methodology combined with advanced 3-dimensional imaging and analysis allowing for the simultaneous study of both antibody and payload distribution in tissues of interest in a preclinical setting. Methods: TAK-264, an investigational ADC targeting anti-guanylyl cyclase C (GCC), was synthesized using tritiated monomethyl auristatin E. The tritiated ADC was then conjugated to diethylenetriaminepentaacetic acid, labeled with 111In, and evaluated in vivo in animals bearing GCC-positive and GCC-negative tumors. Results: CIQA revealed the time course of drug release from ADC and its distribution into various tumor regions that are less accessible to the antibody. For GCC-positive tumors, a representative section obtained 96 h after tracer injection showed only 0.8% of the voxels to have colocalized signal, versus over 15% of the voxels for a GCC-negative tumor section, suggesting successful and specific cleaving of the toxin in the GCC-positive lesions. Conclusion: The combination of a veteran established autoradiography technology with advanced image analysis methodologies affords an experimental tool that can support detailed characterization of ADC tumor penetration and pharmacokinetics.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Indium Radioisotopes , Single Photon Emission Computed Tomography Computed Tomography/methods , Animals , Antibodies, Monoclonal, Humanized , Autoradiography , Cell Line, Tumor , Female , HEK293 Cells , Humans , Imaging, Three-Dimensional , Kinetics , Mice , Pentetic Acid/chemistry , Radiochemistry
5.
PLoS One ; 13(1): e0191046, 2018.
Article in English | MEDLINE | ID: mdl-29370189

ABSTRACT

Guanylyl cyclase C (GCC) is a cell-surface protein that is expressed by normal intestinal epithelial cells, more than 95% of metastatic colorectal cancers (mCRC), and the majority of gastric and pancreatic cancers. Due to strict apical localization, systemically delivered GCC-targeting agents should not reach GCC in normal intestinal tissue, while accessing antigen in tumor. We generated an investigational antibody-drug conjugate (TAK-264, formerly MLN0264) comprising a fully human anti-GCC monoclonal antibody conjugated to monomethyl auristatin E via a protease-cleavable peptide linker. TAK-264 specifically bound, was internalized by, and killed GCC-expressing cells in vitro in an antigen-density-dependent manner. In GCC-expressing xenograft models with similar GCC expression levels/patterns observed in human mCRC samples, TAK-264 induced cell death, leading to tumor regressions and long-term tumor growth inhibition. TAK-264 antitumor activity was generally antigen-density-dependent, although some GCC-expressing tumors were refractory to TAK-264-targeted high local concentrations of payload. These data support further evaluation of TAK-264 in the treatment of GCC-expressing tumors.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoconjugates/pharmacology , Oligopeptides/metabolism , Receptors, Enterotoxin/immunology , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal, Humanized , Blotting, Western , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Female , HEK293 Cells , Humans , Intestinal Mucosa/enzymology , Mice , Mice, SCID , Receptors, Enterotoxin/genetics , Receptors, Enterotoxin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...