Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Neuro Oncol ; 26(1): 178-190, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37503880

ABSTRACT

BACKGROUND: High-grade gliomas (HGG) in young children pose a challenge due to favorable but unpredictable outcomes. While retrospective studies broadened our understanding of tumor biology, prospective data is lacking. METHODS: A cohort of children with histologically diagnosed HGG from the SJYC07 trial was augmented with nonprotocol patients with HGG treated at St. Jude Children's Research Hospital from November 2007 to December 2020. DNA methylome profiling and whole genome, whole exome, and RNA sequencing were performed. These data were integrated with histopathology to yield an integrated diagnosis. Clinical characteristics and preoperative imaging were analyzed. RESULTS: Fifty-six children (0.0-4.4 years) were identified. Integrated analysis split the cohort into four categories: infant-type hemispheric glioma (IHG), HGG, low-grade glioma (LGG), and other-central nervous system (CNS) tumors. IHG was the most prevalent (n = 22), occurred in the youngest patients (median age = 0.4 years), and commonly harbored receptor tyrosine kinase gene fusions (7 ALK, 2 ROS1, 3 NTRK1/2/3, 4 MET). The 5-year event-free (EFS) and overall survival (OS) for IHG was 53.13% (95%CI: 35.52-79.47) and 90.91% (95%CI: 79.66-100.00) vs. 0.0% and 16.67% (95%CI: 2.78-99.74%) for HGG (p = 0.0043, p = 0.00013). EFS and OS were not different between IHG and LGG (p = 0.95, p = 0.43). Imaging review showed IHGs are associated with circumscribed margins (p = 0.0047), hemispheric location (p = 0.0010), and intratumoral hemorrhage (p = 0.0149). CONCLUSIONS: HGG in young children is heterogeneous and best defined by integrating histopathological and molecular features. Patients with IHG have relatively good outcomes, yet they endure significant deficits, making them good candidates for therapy de-escalation and trials of molecular targeted therapy.


Subject(s)
Brain Neoplasms , Glioma , Child , Infant , Humans , Child, Preschool , Retrospective Studies , Prospective Studies , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Glioma/drug therapy , Glioma/genetics , Glioma/diagnosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics
2.
Front Synaptic Neurosci ; 15: 1186484, 2023.
Article in English | MEDLINE | ID: mdl-37448451

ABSTRACT

For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.

3.
BMJ Lead ; 7(3): 233-235, 2023 09.
Article in English | MEDLINE | ID: mdl-37200168
4.
J Pept Sci ; 29(7): e3486, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36843216

ABSTRACT

Receptor-derived peptides have played an important role in elucidating chemokine-receptor interactions. For the inflammatory chemokine CXC-class chemokine ligand 8 (CXCL8), a site II-mimetic peptide has been derived from parts of extracellular loops 2 and 3 and adjacent transmembrane helices of its receptor CXC-class chemokine receptor 1 (Helmer et al., RSC Adv., 2015, 5, 25657). The peptide sequence with a C-terminal glutamine did not bind to CXCL8, whereas one with a C-terminal glutamate did but with low micromolar affinity. We sought to improve the affinity and protease stability of the latter peptide through cyclization while also cyclizing the former for control purposes. To identify a cyclization strategy that permits a receptor-like interaction, we conducted a molecular dynamics simulation of CXCL8 in complex with full-length CXC-class chemokine receptor 1. We introduced a linker to provide an appropriate spacing between the termini and used an on-resin side-chain-to-tail cyclization strategy. Upon chemokine binding, the fluorescence intensity of the tetramethylrhodamine (TAMRA)-labeled cyclic peptides increased whereas the fluorescence anisotropy decreased. Additional molecular dynamics simulations indicated that the fluorophore interacts with the peptide macrocycle so that chemokine binding leads to its displacement and observed changes in fluorescence. Macrocyclization of both 18-amino acid-long peptides led to the same low micromolar affinity for CXCL8. Likewise, both TAMRA-labeled linear peptides interacted with CXCL8 with similar affinities. Interestingly, the linear TAMRA-labeled peptides were more resistant to tryptic digestion than the unlabeled counterparts, whereas the cyclized peptides were not degraded at all. We conclude that the TAMRA fluorophore tends to interact with peptides altering their protease stability and behavior in fluorescence-based assays.


Subject(s)
Interleukin-8 , Peptides , Interleukin-8/chemistry , Interleukin-8/metabolism , Peptides/chemistry , Receptors, Chemokine , Peptide Hydrolases
6.
Nat Commun ; 12(1): 4089, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215733

ABSTRACT

Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.


Subject(s)
Genetic Heterogeneity/drug effects , Glioma/drug therapy , Glioma/genetics , Animals , Brain Neoplasms , Cell Line, Tumor , Cell Proliferation , Child , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Glioma/pathology , High-Throughput Screening Assays , Humans , Mice , Mutation , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays
8.
Pract Lab Med ; 25: e00223, 2021 May.
Article in English | MEDLINE | ID: mdl-34095412

ABSTRACT

POCT (Point of Care Test) or (Point of Care Testing) has been widely used, as it can provide quick results to be acted upon immediately by the clinician. However, POCT devices do not always have the same accuracy and precision as Lab equipment. Laboratorians need to be much better at communicating what is being done in the "lab" and how that relates to what the clinicians are doing with the results of the tests they order.

9.
J Pastoral Care Counsel ; 75(2): 126-132, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34137331

ABSTRACT

This study investigates whether shared Christian religious identity between spouses, individual/shared religiousness, and satisfaction with that religiousness affects individual and marital satisfaction. Research participants (N = 568) completed psychometric measures to report: individual wellbeing, emotional intimacy as a couple, satisfaction with sexual intimacy as a couple, and overall marital satisfaction. Results indicated shared religious identity was correlated with higher marital satisfaction. Generally, higher levels of religiousness were correlated with higher scores on the outcome measures. Finally, participants' satisfaction with their individual and shared religiousness was significantly correlated with higher scores on the selected outcome measures.


Subject(s)
Pastoral Care , Personal Satisfaction , Christianity , Humans , Marriage , Sexual Behavior
11.
J Clin Invest ; 131(10)2021 05 17.
Article in English | MEDLINE | ID: mdl-33998604

ABSTRACT

Prostate cancer (PC) is driven by androgen receptor (AR) activity, a master regulator of prostate development and homeostasis. Frontline therapies for metastatic PC deprive the AR of the activating ligands testosterone (T) and dihydrotestosterone (DHT) by limiting their biosynthesis or blocking AR binding. Notably, AR signaling is dichotomous, inducing growth at lower activity levels, while suppressing growth at higher levels. Recent clinical studies have exploited this effect by administration of supraphysiological concentrations of T, resulting in clinical responses and improvements in quality of life. However, the use of T as a therapeutic agent in oncology is limited by poor drug-like properties as well as rapid and variable metabolism. Here, we investigated the antitumor effects of selective AR modulators (SARMs), which are small-molecule nonsteroidal AR agonists developed to treat muscle wasting and cachexia. Several orally administered SARMs activated the AR program in PC models. AR cistromes regulated by steroidal androgens and SARMs were superimposable. Coregulatory proteins including HOXB13 and GRHL2 comprised AR complexes assembled by both androgens and SARMs. At bioavailable concentrations, SARMs repressed MYC oncoprotein expression and inhibited the growth of castration-sensitive and castration-resistant PC in vitro and in vivo. These results support further clinical investigation of SARMs for treating advanced PC.


Subject(s)
Androgens/pharmacology , Neoplasm Proteins/agonists , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Dihydrotestosterone/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Signal Transduction/genetics
13.
J Chem Inf Model ; 61(3): 1251-1274, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33448226

ABSTRACT

Over the past two decades, the opioid epidemic in the United States and Canada has evidenced the need for a better understanding of the molecular mechanisms of medications used to fight pain. Morphine and fentanyl are widely used in opiate-mediated analgesia for the treatment of chronic pain. These compounds target the µ-opioid receptor (MOR), a class A G protein-coupled receptor (GPCR). In light of described higher efficacy of fentanyl with respect to morphine, we have performed independent µs-length unbiased molecular dynamics (MD) simulations of MOR complexes with each of these ligands, including the MOR antagonist naltrexone as a negative control. Consequently, MD simulations totaling 58 µs have been conducted to elucidate at the atomic level ligand-specific receptor activity and signal transmission in the MOR. In particular, we have identified stable binding poses of morphine and fentanyl, which interact differently with the MOR. Different ligand-receptor interaction landscapes directly induce sidechain conformational changes of orthosteric pocket residues: Asp1493.32, Tyr1503.33, Gln1262.60, and Lys2355.39. The induced conformations determine Asp1493.32-Tyr3287.43 sidechain-sidechain interactions and Trp2956.48-Ala2425.46 sidechain-backbone H-bond formations, as well as Met1533.36 conformational changes. In addition to differences in ligand binding, different intracellular receptor conformational changes are observed as morphine preferentially activates transmembrane (TM) helices: TM3 and TM5, while fentanyl preferentially activates TM6 and TM7. As conformational changes in TM6 and TM7 are widely described as being the most crucial aspect in GPCR activation, this may contribute to the greater efficacy of fentanyl over morphine. These computationally observed functional differences between fentanyl and morphine may provide new avenues for the design of safer but not weaker opioid drugs because it is desirable to increase the safety of medicines without sacrificing their efficacy.


Subject(s)
Fentanyl , Morphine , Analgesics, Opioid/pharmacology , Fentanyl/pharmacology , Ligands , Molecular Dynamics Simulation , Morphine/pharmacology , Receptors, Opioid, mu
14.
Eur J Med Chem ; 212: 113151, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33450620

ABSTRACT

Employing two different alkyne-modified dopamine agonists to construct bivalent compounds via click chemistry resulted in the identification of a bivalent ligand (11c) for dopamine D2 receptor homodimer, which, compared to its parent monomeric alkyne, showed a 16-fold higher binding affinity for the dopamine D2 receptor and a 5-fold higher potency in a cAMP assay in HEK 293T cells stably expressing D2R. Molecular modeling revealed that 11c can indeed bridge the orthosteric binding sites of a D2R homodimer in a relaxed conformation via the TM5-TM6 interface and allows to largely rationalize the results of the receptor assays.


Subject(s)
Dopamine Agonists/pharmacology , Drug Discovery , Receptors, Dopamine D2/agonists , Cells, Cultured , Dopamine Agonists/chemical synthesis , Dopamine Agonists/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
15.
Clin Biochem ; 88: 11-17, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33264650

ABSTRACT

Point of Care Testing (POCT) refers to clinical laboratory testing performed outside the central laboratory, nearer to the patient and sometimes at the patient bedside. The testing is usually performed by clinical staff, such as physicians or nurses, who are not laboratory trained. This document was developed by the POCT Interest group of the Canadian Society of Clinical Chemists (CSCC) as practical guidance for quality assurance practices related to POCT performed in hospital and outside hospital environments. The aspects of quality assurance addressed in this document include: (1) device selection, (2) initial device verification, (3) ongoing device verification, (4) ongoing quality assurance including reagent and quality control (QC) lot changes, and (5) quality management including operator and document management.


Subject(s)
Clinical Laboratory Techniques/standards , Point-of-Care Testing/standards , Quality Assurance, Health Care/methods , Canada , Humans , Practice Guidelines as Topic/standards , Quality Control
16.
Sci Rep ; 10(1): 19942, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203907

ABSTRACT

Molecular dynamics (MD) is the common computational technique for assessing efficacy of GPCR-bound ligands. Agonist efficacy measures the capability of the ligand-bound receptor of reaching the active state in comparison with the free receptor. In this respect, agonists, neutral antagonists and inverse agonists can be considered. A collection of MD simulations of both the ligand-bound and the free receptor are needed to provide reliable conclusions. Variability in the trajectories needs quantification and proper statistical tools for meaningful and non-subjective conclusions. Multiple-factor (time, ligand, lipid) ANOVA with repeated measurements on the time factor is proposed as a suitable statistical method for the analysis of agonist-dependent GPCR activation MD simulations. Inclusion of time factor in the ANOVA model is consistent with the time-dependent nature of MD. Ligand and lipid factors measure agonist and lipid influence on receptor activation. Previously reported MD simulations of adenosine A2a receptor (A2aR) are reanalyzed with this statistical method. TM6-TM3 and TM7-TM3 distances are selected as dependent variables in the ANOVA model. The ligand factor includes the presence or absence of adenosine whereas the lipid factor considers DOPC or DOPG lipids. Statistical analysis of MD simulations shows the efficacy of adenosine and the effect of the membrane lipid composition. Subsequent application of the statistical methodology to NECA A2aR agonist, with resulting P values in consistency with its pharmacological profile, suggests that the method is useful for ligand comparison and potentially for dynamic structure-based virtual screening.


Subject(s)
Adenosine A2 Receptor Agonists/metabolism , Adenosine/metabolism , Molecular Dynamics Simulation , Protein Conformation , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism , Binding Sites , Humans , Ligands , Protein Binding
18.
Teach Learn Med ; 32(5): 531-540, 2020.
Article in English | MEDLINE | ID: mdl-32489123

ABSTRACT

Problem: The mistreatment of medical and nursing students and junior health professionals has been reported internationally in research and the media. Mistreatment can be embedded and normalized in hierarchical healthcare workplaces, limiting the effectiveness of policies and reporting tools to generate change; as a result, some of those who experience mistreatment later perpetuate it. We used a novel, creative approach, verbatim theater, to highlight the complexity of healthcare workplaces, encourage critical reflection, and support long-term culture change. Intervention: Verbatim theater is a theater-for-change documentary genre in which a playscript is devised using only the words spoken by informants. In 2017, 30 healthcare students and health professionals were recruited and interviewed about their experience of work and training by the multidisciplinary Sydney Arts and Health Collective using semi-structured interviews. Interview transcripts became the primary material from which the script for the verbatim theater play 'Grace Under Pressure' was developed. The performing arts have previously been used to develop the communication skills of health professional students; this esthetic expression of the real-life effects of healthcare workplace culture on trainees and students was implemented to stimulate consciousness of, and dialogue about, workplace mistreatment in healthcare work and training. Context: The play premiered at a major Sydney theater in October 2017, attended by the lay public and student and practicing health professionals. In November 2017, three focus groups were held with a sample of audience members comprising healthcare professionals and students. These focus groups explored the impact of the play on reflection and discussion of healthcare culture and/or promoting culture change in the health workplace. We analyzed the focus group data using theoretical thematic analysis, informed by Turner's theory of the relation between 'social' and 'esthetic' drama to understand the impact of the play on its audience. Impact: Focus group members recognized aspects of their personal experience of professionalism, training, and workplace culture in the play, Grace Under Pressure. They reported that the play's use of real-life stories and authentic language facilitated their critical reflection. Participants constructed some learning as 'revelation,' in which the play enabled them to gain significant new insight into the culture of health care and opened up discussions with colleagues. As a result, participants suggested possible remedies for unhealthy aspects of the culture, including systemic issues of bullying and harassment. A small number of participants critiqued aspects of the play they believed did not adequately reflect their experience, with some believing that the play over-emphasized workplace mistreatment. Lessons Learned: Verbatim theater is a potent method for making personal experiences of healthcare workplace and training culture more visible to lay and health professional audiences. In line with Turner's theory, the play's use of real-life stories and authentic language enabled recognition of systemic challenges in healthcare workplaces by training and practicing health professionals in the audience. Verbatim theater provides a means to promote awareness and discussion of difficult social issues and potential means of addressing them.


Subject(s)
Bullying , Culture , Drama , Interprofessional Relations , Medical Staff/psychology , Delivery of Health Care , Focus Groups , Humans , Interviews as Topic , Professionalism , Qualitative Research , Workplace
19.
J Neurochem ; 155(4): 390-402, 2020 11.
Article in English | MEDLINE | ID: mdl-32491217

ABSTRACT

While high threshold voltage-dependent Ca2+ channels (VDCCs) of the N and P/Q families are crucial for evoked neurotransmitter release in the mammalian CNS, it remains unclear to what extent L-type Ca2+ channels (LTCCs), which have been mainly considered as acting at postsynaptic sites, participate in the control of transmitter release. Here, we investigate the possible role of LTCCs in regulating GABA release by cerebellar molecular layer interneurons (MLIs) from rats. We found that BayK8644 (BayK) markedly increases mIPSC frequency in MLIs and Purkinje cells (PCs), suggesting that LTCCs are expressed presynaptically. Furthermore, we observed (1) a potentiation of evoked IPSCs in the presence of BayK, (2) an inhibition of evoked IPSCs in the presence of the LTCC-specific inhibitor Compound 8 (Cp8), and (3) a strong reduction of mIPSC frequency by Cp8. BayK effects are reduced by dantrolene, suggesting that ryanodine receptors act in synergy with LTCCs. Finally, BayK enhances presynaptic AP-evoked Ca2+ transients and increases the frequency of spontaneous axonal Ca2+ transients observed in TTX. Taken together, our data demonstrate that LTCCs are of primary importance in regulating GABA release by MLIs.


Subject(s)
Calcium Channels, L-Type/physiology , Cerebellum/physiology , Interneurons/physiology , Presynaptic Terminals/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Cerebellum/cytology , Female , Male , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
20.
PLoS Comput Biol ; 16(4): e1007818, 2020 04.
Article in English | MEDLINE | ID: mdl-32298258

ABSTRACT

The activation process of G protein-coupled receptors (GPCRs) has been extensively studied, both experimentally and computationally. In particular, Molecular Dynamics (MD) simulations have proven useful in exploring GPCR conformational space. The typical behaviour of class A GPCRs, when subjected to unbiased MD simulations from their crystallized inactive state, is to fluctuate between inactive and intermediate(s) conformations, even with bound agonist. Fully active conformation(s) are rarely stabilized unless a G protein is also bound. Despite several crystal structures of the adenosine A2a receptor (A2aR) having been resolved in complex with co-crystallized agonists and Gs protein, its agonist-mediated activation process is still not completely understood. In order to thoroughly examine the conformational landscape of A2aR activation, we performed unbiased microsecond-length MD simulations in quadruplicate, starting from the inactive conformation either in apo or with bound agonists: endogenous adenosine or synthetic NECA, embedded in two homogeneous phospholipid membranes: 1,2-dioleoyl-sn-glycerol-3-phosphoglycerol (DOPG) or 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC). In DOPC with bound adenosine or NECA, we observe transition to an intermediate receptor conformation consistent with the known adenosine-bound crystal state. In apo state in DOPG, two different intermediate conformations are obtained. One is similar to that observed with bound adenosine in DOPC, while the other is closer to the active state but not yet fully active. Exclusively, in DOPG with bound adenosine or NECA, we reproducibly identify receptor conformations with fully active features, which are able to dock Gs protein. These different receptor conformations can be attributed to the action/absence of agonist and phospholipid-mediated allosteric effects on the intracellular side of the receptor.


Subject(s)
Adenosine A2 Receptor Agonists , Phospholipids , Receptor, Adenosine A2A , Adenosine/chemistry , Adenosine/metabolism , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/metabolism , Binding Sites , Humans , Molecular Dynamics Simulation , Phosphatidylcholines , Phosphatidylglycerols , Phospholipids/chemistry , Phospholipids/metabolism , Protein Conformation , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...