Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 31(7): 1280-1289, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34140313

ABSTRACT

Bisulfite sequencing detects 5mC and 5hmC at single-base resolution. However, bisulfite treatment damages DNA, which results in fragmentation, DNA loss, and biased sequencing data. To overcome these problems, enzymatic methyl-seq (EM-seq) was developed. This method detects 5mC and 5hmC using two sets of enzymatic reactions. In the first reaction, TET2 and T4-BGT convert 5mC and 5hmC into products that cannot be deaminated by APOBEC3A. In the second reaction, APOBEC3A deaminates unmodified cytosines by converting them to uracils. Therefore, these three enzymes enable the identification of 5mC and 5hmC. EM-seq libraries were compared with bisulfite-converted DNA, and each library type was ligated to Illumina adaptors before conversion. Libraries were made using NA12878 genomic DNA, cell-free DNA, and FFPE DNA over a range of DNA inputs. The 5mC and 5hmC detected in EM-seq libraries were similar to those of bisulfite libraries. However, libraries made using EM-seq outperformed bisulfite-converted libraries in all specific measures examined (coverage, duplication, sensitivity, etc.). EM-seq libraries displayed even GC distribution, better correlations across DNA inputs, increased numbers of CpGs within genomic features, and accuracy of cytosine methylation calls. EM-seq was effective using as little as 100 pg of DNA, and these libraries maintained the described advantages over bisulfite sequencing. EM-seq library construction, using challenging samples and lower DNA inputs, opens new avenues for research and clinical applications.

2.
Genome Res ; 31(2): 291-300, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33468551

ABSTRACT

The predominant methodology for DNA methylation analysis relies on the chemical deamination by sodium bisulfite of unmodified cytosine to uracil to permit the differential readout of methylated cytosines. Bisulfite treatment damages the DNA, leading to fragmentation and loss of long-range methylation information. To overcome this limitation of bisulfite-treated DNA, we applied a new enzymatic deamination approach, termed enzymatic methyl-seq (EM-seq), to long-range sequencing technologies. Our methodology, named long-read enzymatic modification sequencing (LR-EM-seq), preserves the integrity of DNA, allowing long-range methylation profiling of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) over multikilobase length of genomic DNA. When applied to known differentially methylated regions (DMRs), LR-EM-seq achieves phasing of >5 kb, resulting in broader and better defined DMRs compared with that previously reported. This result showed the importance of phasing methylation for biologically relevant questions and the applicability of LR-EM-seq for long-range epigenetic analysis at single-molecule and single-nucleotide resolution.

3.
Mol Ecol ; 29(1): 86-104, 2020 01.
Article in English | MEDLINE | ID: mdl-31782579

ABSTRACT

Islands are generally colonized by few individuals which could lead to a founder effect causing loss of genetic diversity and rapid divergence by strong genetic drift. Insular conditions can also induce new selective pressures on populations. Here, we investigated the extent of genetic differentiation within a white-tailed deer (Odocoileus virginianus) population introduced on an island and its differentiation with its source mainland population. In response to their novel environmental conditions, introduced deer changed phenotypically from mainland individuals, therefore we investigated the genetic bases of the morphological differentiation. The study was conducted on Anticosti Island (Québec, Canada) where 220 individuals were introduced 120 years ago, resulting in a population size over 160,000 individuals. We used genotyping-by-sequencing (GBS) to generate 8,518 filtered high-quality SNPs and compared patterns of genetic diversity and differentiation between the continental and Anticosti Island populations. Clustering analyses indicated a single panmictic island population and no sign of isolation by distance. Our results revealed a weak, albeit highly significant, genetic differentiation between the Anticosti Island population and its source population (mean FST  = 0.005), which allowed a population assignment success of 93%. Also, the high genetic diversity maintained in the introduced population supports the absence of a strong founder effect due to the large number of founders followed by rapid population growth. We further used a polygenic approach to assess the genetic bases of the divergent phenotypical traits between insular and continental populations. We found loci related to muscular function and lipid metabolism, which suggested that these could be involved in local adaptation on Anticosti Island. We discuss these results in a harvest management context.


Subject(s)
Adaptation, Biological , Deer/genetics , Genetic Drift , Genetic Variation , Animals , Deer/physiology , Ecology , Female , Male , Population Density , Quebec
4.
Curr Protoc Mol Biol ; 115: 7.26.1-7.26.14, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27366894

ABSTRACT

"Microbiome" is used to describe the communities of microorganisms and their genes in a particular environment, including communities in association with a eukaryotic host or part of a host. One challenge in microbiome analysis concerns the presence of host DNA in samples. Removal of host DNA before sequencing results in greater sequence depth of the intended microbiome target population. This unit describes a novel method of microbial DNA enrichment in which methylated host DNA such as human genomic DNA is selectively bound and separated from microbial DNA before next-generation sequencing (NGS) library construction. This microbiome enrichment technique yields a higher fraction of microbial sequencing reads and improved read quality resulting in a reduced cost of downstream data generation and analysis. © 2016 by John Wiley & Sons, Inc.


Subject(s)
DNA/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Microbiota , Sequence Analysis, DNA/methods , Chemical Precipitation , DNA/genetics , DNA Methylation , Humans
5.
Curr Protoc Mol Biol ; 113(1): 7.22.1-7.22.9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-31773915

ABSTRACT

Ribosomal RNAs (rRNAs) are extremely abundant, often constituting 80% to 90% of total RNA. Since rRNA sequences are often not of interest in genomic RNA sequencing experiments, rRNAs can be removed from the sample before the library preparation step, in order to prevent the majority of the library and the majority of sequencing reads from being rRNA. Removal of rRNA can be especially challenging for low quality and formalin-fixed paraffin-embedded (FFPE) RNA samples due to the fragmented nature of these RNA molecules. The NEBNext rRNA Depletion Kit (Human/Mouse/Rat) depletes both cytoplasmic (5 S rRNA, 5.8 S rRNA, 18 S rRNA, and 28 S rRNA) and mitochondrial rRNA (12 S rRNA and 16 S rRNA) from total RNA preparations from human, mouse, and rat samples. Due to the high similarity among mammalian rRNA sequences, it is likely that rRNA depletion can also be achieved for other mammals but has not been empirically tested. This product is compatible with both intact and degraded RNA (e.g., FFPE RNA). The resulting rRNA-depleted RNA is suitable for RNA-seq, random-primed cDNA synthesis, or other downstream RNA analysis applications. Regardless of the quality or amount of input RNA, this method efficiently removes rRNA, while retaining non-coding and other non-poly(A) RNAs. The NEBNext rRNA Depletion Kit thus provides a more complete picture of the transcript repertoire than oligo d(T) poly(A) mRNA enrichment methods. © 2016 by John Wiley & Sons, Inc.

6.
Nucleic Acids Res ; 36(20): 6558-70, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18931376

ABSTRACT

MmeI is an unusual Type II restriction enzyme that is useful for generating long sequence tags. We have cloned the MmeI restriction-modification (R-M) system and found it to consist of a single protein having both endonuclease and DNA methyltransferase activities. The protein comprises an amino-terminal endonuclease domain, a central DNA methyltransferase domain and C-terminal DNA recognition domain. The endonuclease cuts the two DNA strands at one site simultaneously, with enzyme bound at two sites interacting to accomplish scission. Cleavage occurs more rapidly than methyl transfer on unmodified DNA. MmeI modifies only the adenine in the top strand, 5'-TCCRAC-3'. MmeI endonuclease activity is blocked by this top strand adenine methylation and is unaffected by methylation of the adenine in the complementary strand, 5'-GTYGGA-3'. There is no additional DNA modification associated with the MmeI R-M system, as is required for previously characterized Type IIG R-M systems. The MmeI R-M system thus uses modification on only one of the two DNA strands for host protection. The MmeI architecture represents a minimal approach to assembling a restriction-modification system wherein a single DNA recognition domain targets both the endonuclease and DNA methyltransferase activities.


Subject(s)
Deoxyribonucleases, Type II Site-Specific/metabolism , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Adenine/metabolism , Base Sequence , Cloning, Molecular , DNA Cleavage , DNA Methylation , Deoxyribonucleases, Type II Site-Specific/chemistry , Deoxyribonucleases, Type II Site-Specific/genetics , Methylophilus methylotrophus/genetics , Open Reading Frames , Sequence Analysis, DNA , Site-Specific DNA-Methyltransferase (Adenine-Specific)/chemistry , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...