Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(6): eadk3384, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335290

ABSTRACT

Disruption of cell division cycle associated 7 (CDCA7) has been linked to aberrant DNA hypomethylation, but the impact of DNA methylation loss on transcription has not been investigated. Here, we show that CDCA7 is critical for maintaining global DNA methylation levels across multiple tissues in vivo. A pathogenic Cdca7 missense variant leads to the formation of large, aberrantly hypomethylated domains overlapping with the B genomic compartment but without affecting the deposition of H3K9 trimethylation (H3K9me3). CDCA7-associated aberrant DNA hypomethylation translated to localized, tissue-specific transcriptional dysregulation that affected large gene clusters. In the brain, we identify CDCA7 as a transcriptional repressor and epigenetic regulator of clustered protocadherin isoform choice. Increased protocadherin isoform expression frequency is accompanied by DNA methylation loss, gain of H3K4 trimethylation (H3K4me3), and increased binding of the transcriptional regulator CCCTC-binding factor (CTCF). Overall, our in vivo work identifies a key role for CDCA7 in safeguarding tissue-specific expression of gene clusters via the DNA methylation pathway.


Subject(s)
Cell Cycle Proteins , Nuclear Proteins , DNA , DNA Methylation , Protein Isoforms/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Mice , Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism
2.
Nat Commun ; 14(1): 5466, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749075

ABSTRACT

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , Muscular Dystrophy, Facioscapulohumeral , Animals , Mice , Chromatin/genetics , Epigenomics , Gene Silencing , Genes, Homeobox , Muscular Dystrophy, Facioscapulohumeral/genetics , Chromosomal Proteins, Non-Histone/genetics
3.
Clin Epigenetics ; 15(1): 135, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626340

ABSTRACT

BACKGROUND: Loss of epigenetic control is a hallmark of aging. Among the most prominent roles of epigenetic mechanisms is the inactivation of one of two copies of the X chromosome in females through DNA methylation. Hence, age-related disruption of X-chromosome inactivation (XCI) may contribute to the aging process in women. METHODS: We analyzed 9,777 CpGs on the X chromosome in whole blood samples from 2343 females and 1688 males (Illumina 450k methylation array) and replicated findings in duplicate using one whole blood and one purified monocyte data set (in total, 991/924 females/males). We used double generalized linear models to detect age-related differentially methylated CpGs (aDMCs), whose mean methylation level differs with age, and age-related variably methylated CpGs (aVMCs), whose methylation level becomes more variable with age. RESULTS: In females, aDMCs were relatively uncommon (n = 33) and preferentially occurred in regions known to escape XCI. In contrast, many CpGs (n = 987) were found to display an increased variance with age (aVMCs). Of note, the replication rate of aVMCs was also high in purified monocytes (94%), indicating an independence of cell composition. aVMCs accumulated in CpG islands and regions subject to XCI suggesting that they stemmed from the inactive X. In males, carrying an active copy of the X chromosome only, aDMCs (n = 316) were primarily driven by cell composition, while aVMCs replicated well (95%) but were infrequent (n = 37). CONCLUSIONS: Our results imply that age-related DNA methylation differences at the inactive X chromosome are dominated by the accumulation of variability.


Subject(s)
DNA Methylation , X Chromosome , Male , Female , Humans , X Chromosome Inactivation , Aging/genetics , Epigenesis, Genetic
4.
Commun Biol ; 6(1): 677, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380887

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic derepression of the 4q-linked D4Z4 macrosatellite repeat resulting in inappropriate expression of the D4Z4 repeat-encoded DUX4 gene in skeletal muscle. In 5% of FSHD cases, D4Z4 chromatin relaxation is due to germline mutations in one of the chromatin modifiers SMCHD1, DNMT3B or LRIF1. The mechanism of SMCHD1- and LRIF1-mediated D4Z4 repression is not clear. We show that somatic loss-of-function of either SMCHD1 or LRIF1 does not result in D4Z4 chromatin changes and that SMCHD1 and LRIF1 form an auxiliary layer of D4Z4 repressive mechanisms. We uncover that SMCHD1, together with the long isoform of LRIF1, binds to the LRIF1 promoter and silences LRIF1 expression. The interdependency of SMCHD1 and LRIF1 binding differs between D4Z4 and the LRIF1 promoter, and both loci show different transcriptional responses to either early developmentally or somatically perturbed chromatin function of SMCHD1 and LRIF1.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Muscular Dystrophy, Facioscapulohumeral , Humans , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Epigenomics , Genes, Homeobox , Muscle, Skeletal , Muscular Dystrophy, Facioscapulohumeral/genetics , Cell Cycle Proteins/genetics
5.
Cell Commun Signal ; 21(1): 15, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36691073

ABSTRACT

Grainyhead like 2 (GRHL2) is an essential transcription factor for development and function of epithelial tissues. It has dual roles in cancer by supporting tumor growth while suppressing epithelial to mesenchymal transitions (EMT). GRHL2 cooperates with androgen and estrogen receptors (ER) to regulate gene expression. We explore genome wide GRHL2 binding sites conserved in three ER⍺/GRHL2 positive luminal breast cancer cell lines by ChIP-Seq. Interaction with the ER⍺/FOXA1/GATA3 complex is observed, however, only for a minor fraction of conserved GRHL2 peaks. We determine genome wide transcriptional dynamics in response to loss of GRHL2 by nascent RNA Bru-seq using an MCF7 conditional knockout model. Integration of ChIP- and Bru-seq pinpoints candidate direct GRHL2 target genes in luminal breast cancer. Multiple connections between GRHL2 and proliferation are uncovered, including transcriptional activation of ETS and E2F transcription factors. Among EMT-related genes, direct regulation of CLDN4 is corroborated but several targets identified in other cells (including CDH1 and ZEB1) are ruled out by both ChIP- and Bru-seq as being directly controlled by GRHL2 in luminal breast cancer cells. Gene clusters correlating positively (including known GRHL2 targets such as ErbB3, CLDN4/7) or negatively (including TGFB1 and TGFBR2) with GRHL2 in the MCF7 knockout model, display similar correlation with GRHL2 in ER positive as well as ER negative breast cancer patients. Altogether, this study uncovers gene sets regulated directly or indirectly by GRHL2 in luminal breast cancer, identifies novel GRHL2-regulated genes, and points to distinct GRHL2 regulation of EMT in luminal breast cancer cells. Video Abstract.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Humans , Female , DNA-Binding Proteins/metabolism , Breast Neoplasms/pathology , Transcription Factors/metabolism , Gene Expression Regulation , Gene Expression , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
6.
Nat Commun ; 12(1): 6469, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753942

ABSTRACT

Subunit switches in the BAF chromatin remodeler are essential during development. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause neurodevelopmental disorders, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features. Here, we leveraged ARID1B+/- Coffin-Siris patient-derived iPSCs and modeled cranial neural crest cell (CNCC) formation. We discovered that ARID1B is active only during the first stage of this process, coinciding with neuroectoderm specification, where it is part of a lineage-specific BAF configuration (ARID1B-BAF). ARID1B-BAF regulates exit from pluripotency and lineage commitment by attenuating thousands of enhancers and genes of the NANOG and SOX2 networks. In iPSCs, these enhancers are maintained active by ARID1A-containing BAF. At the onset of differentiation, cells transition from ARID1A- to ARID1B-BAF, eliciting attenuation of the NANOG/SOX2 networks and triggering pluripotency exit. Coffin-Siris patient cells fail to perform the ARID1A/ARID1B switch, and maintain ARID1A-BAF at the pluripotency enhancers throughout all stages of CNCC formation. This leads to persistent NANOG/SOX2 activity which impairs CNCC formation. Despite showing the typical neural crest signature (TFAP2A/SOX9-positive), ARID1B-haploinsufficient CNCCs are also aberrantly NANOG-positive. These findings suggest a connection between ARID1B mutations, neuroectoderm specification and a pathogenic mechanism for Coffin-Siris syndrome.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Nanog Homeobox Protein/metabolism , Neural Crest/metabolism , Transcription Factors/metabolism , Blotting, Western , DNA-Binding Proteins/genetics , Flow Cytometry , HEK293 Cells , Humans , Mutation/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics
7.
Epigenetics Chromatin ; 14(1): 49, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34706774

ABSTRACT

BACKGROUND: Microrchidia proteins (MORCs) are involved in epigenetic gene silencing in a variety of eukaryotic organisms. Deletion of MORCs result in several developmental abnormalities and their dysregulation has been implicated in developmental disease and multiple cancers. Specifically, mammalian MORC3 mutations are associated with immune system defects and human cancers such as bladder, uterine, stomach, lung, and diffuse large B cell lymphomas. While previous studies have shown that MORC3 binds to H3K4me3 in vitro and overlaps with H3K4me3 ChIP-seq peaks in mouse embryonic stem cells, the mechanism by which MORC3 regulates gene expression is unknown. RESULTS: In this study, we identified that mutation in Morc3 results in a suppressor of variegation phenotype in a Modifiers of murine metastable epialleles Dominant (MommeD) screen. We also find that MORC3 functions as an epigenetic silencer of transposable elements (TEs) in mouse embryonic stem cells (mESCs). Loss of Morc3 results in upregulation of TEs, specifically those belonging to the LTR class of retrotransposons also referred to as endogenous retroviruses (ERVs). Using ChIP-seq we found that MORC3, in addition to its known localization at H3K4me3 sites, also binds to ERVs, suggesting a direct role in regulating their expression. Previous studies have shown that these ERVs are marked by the repressive histone mark H3K9me3 which plays a key role in their silencing. However, we found that levels of H3K9me3 showed only minor losses in Morc3 mutant mES cells. Instead, we found that loss of Morc3 resulted in increased chromatin accessibility at ERVs as measured by ATAC-seq. CONCLUSIONS: Our results reveal MORC3 as a novel regulator of ERV silencing in mouse embryonic stem cells. The relatively minor changes of H3K9me3 in the Morc3 mutant suggests that MORC3 acts mainly downstream of, or in a parallel pathway with, the TRIM28/SETDB1 complex that deposits H3K9me3 at these loci. The increased chromatin accessibility of ERVs in the Morc3 mutant suggests that MORC3 may act at the level of chromatin compaction to effect TE silencing.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA Transposable Elements , DNA-Binding Proteins , Endogenous Retroviruses , Mouse Embryonic Stem Cells , Animals , Chromatin , DNA-Binding Proteins/metabolism , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Gene Silencing , Mice , Mouse Embryonic Stem Cells/metabolism
8.
Nat Commun ; 12(1): 5618, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584077

ABSTRACT

Monozygotic (MZ) twins and higher-order multiples arise when a zygote splits during pre-implantation stages of development. The mechanisms underpinning this event have remained a mystery. Because MZ twinning rarely runs in families, the leading hypothesis is that it occurs at random. Here, we show that MZ twinning is strongly associated with a stable DNA methylation signature in adult somatic tissues. This signature spans regions near telomeres and centromeres, Polycomb-repressed regions and heterochromatin, genes involved in cell-adhesion, WNT signaling, cell fate, and putative human metastable epialleles. Our study also demonstrates a never-anticipated corollary: because identical twins keep a lifelong molecular signature, we can retrospectively diagnose if a person was conceived as monozygotic twin.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenomics/methods , Quantitative Trait Loci/genetics , Twinning, Monozygotic/genetics , Twins, Monozygotic/genetics , Adult , Finland , Genotype , Humans , Middle Aged , Netherlands , Polymorphism, Single Nucleotide , Registries/statistics & numerical data , Retrospective Studies , United Kingdom , Young Adult
9.
Cells ; 10(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946533

ABSTRACT

Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.


Subject(s)
Epigenesis, Genetic , Lymphopoiesis , T-Lymphocytes/metabolism , Transcription Factors/metabolism , Animals , Chromatin Assembly and Disassembly , DNA Methylation , Humans , T-Lymphocytes/cytology
10.
Nat Commun ; 12(1): 1342, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637760

ABSTRACT

Bulky DNA lesions in transcribed strands block RNA polymerase II (RNAPII) elongation and induce a genome-wide transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but how transcription is restored in the genome following DNA repair remains unresolved. Here, we find that the TCR-specific CSB protein loads the PAF1 complex (PAF1C) onto RNAPII in promoter-proximal regions in response to DNA damage. Although dispensable for TCR-mediated repair, PAF1C is essential for transcription recovery after UV irradiation. We find that PAF1C promotes RNAPII pause release in promoter-proximal regions and subsequently acts as a processivity factor that stimulates transcription elongation throughout genes. Our findings expose the molecular basis for a non-canonical PAF1C-dependent pathway that restores transcription throughout the human genome after genotoxic stress.


Subject(s)
DNA Damage/physiology , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , DNA Repair/physiology , Poly-ADP-Ribose Binding Proteins/metabolism , Transcription Factors/metabolism , Cell Nucleus , DNA/radiation effects , Humans , Poly-ADP-Ribose Binding Proteins/genetics , Protein Interaction Maps , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription Factors/genetics , Transcription, Genetic , Ultraviolet Rays
11.
Blood ; 137(4): 493-499, 2021 01 28.
Article in English | MEDLINE | ID: mdl-32905580

ABSTRACT

Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.


Subject(s)
Agammaglobulinemia/genetics , B-Lymphocytes/pathology , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Immunologic Deficiency Syndromes/genetics , Lymphopenia/genetics , Adult , Animals , B-Lymphocytes/metabolism , Child , Child, Preschool , Chromosomes, Human, Pair 5/genetics , Codon, Nonsense , Consanguinity , Crohn Disease/genetics , DNA Copy Number Variations , Developmental Disabilities/genetics , Disease Models, Animal , Disease Susceptibility , Female , Heart Defects, Congenital/genetics , Humans , Infections/etiology , Loss of Function Mutation , Male , Mice , Neutropenia/genetics , Pedigree , Uniparental Disomy , Exome Sequencing
12.
Genome Biol ; 21(1): 220, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859263

ABSTRACT

BACKGROUND: DNA methylation is a key epigenetic modification in human development and disease, yet there is limited understanding of its highly coordinated regulation. Here, we identify 818 genes that affect DNA methylation patterns in blood using large-scale population genomics data. RESULTS: By employing genetic instruments as causal anchors, we establish directed associations between gene expression and distant DNA methylation levels, while ensuring specificity of the associations by correcting for linkage disequilibrium and pleiotropy among neighboring genes. The identified genes are enriched for transcription factors, of which many consistently increased or decreased DNA methylation levels at multiple CpG sites. In addition, we show that a substantial number of transcription factors affected DNA methylation at their experimentally determined binding sites. We also observe genes encoding proteins with heterogenous functions that have widespread effects on DNA methylation, e.g., NFKBIE, CDCA7(L), and NLRC5, and for several examples, we suggest plausible mechanisms underlying their effect on DNA methylation. CONCLUSION: We report hundreds of genes that affect DNA methylation and provide key insights in the principles underlying epigenetic regulation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Endopeptidases/genetics , Gene Expression , Genetic Pleiotropy , Genomics , Humans , I-kappa B Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Transcription Factors/genetics
13.
Sci Adv ; 6(31): eaaw7313, 2020 07.
Article in English | MEDLINE | ID: mdl-32789164

ABSTRACT

T cell factor 1 (Tcf1) is the first T cell-specific protein induced by Notch signaling in the thymus, leading to the activation of two major target genes, Gata3 and Bcl11b. Tcf1 deficiency results in partial arrests in T cell development, high apoptosis, and increased development of B and myeloid cells. Phenotypically, seemingly fully T cell-committed thymocytes with Tcf1 deficiency have promiscuous gene expression and an altered epigenetic profile and can dedifferentiate into more immature thymocytes and non-T cells. Restoring Bcl11b expression in Tcf1-deficient cells rescues T cell development but does not strongly suppress the development of non-T cells; in contrast, expressing Gata3 suppresses their development but does not rescue T cell development. Thus, T cell development is controlled by a minimal transcription factor network involving Notch signaling, Tcf1, and the subsequent division of labor between Bcl11b and Gata3, thereby ensuring a properly regulated T cell gene expression program.

14.
Essays Biochem ; 63(6): 773-783, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31724723

ABSTRACT

DNA methylation is an epigenetic modification essential for normal mammalian development. Initially associated with gene silencing, more diverse roles for DNA methylation in the regulation of gene expression patterns are increasingly being recognized. Some of these insights come from studying the function of genes that are mutated in human diseases characterized by abnormal DNA methylation landscapes. The first disorder to be associated with congenital defects in DNA methylation was Immunodeficiency, Centromeric instability, Facial anomalies syndrome (ICF). The hallmark of this syndrome is hypomethylation of pericentromeric satellite repeats, with mutations in four genes: DNMT3B, ZBTB24, CDCA7 and HELLS, being linked to the disease. Here, we discuss recent progress in understanding the molecular interactions between these genes and consider current evidence for how aberrant DNA methylation may contribute to the abnormal phenotype present in ICF syndrome patients.


Subject(s)
DNA Methylation/physiology , DNA/metabolism , Face/abnormalities , Primary Immunodeficiency Diseases/genetics , DNA/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Helicases/genetics , Epigenesis, Genetic/physiology , Face/physiopathology , Humans , Mutation , Nuclear Proteins/genetics , Phenotype , Primary Immunodeficiency Diseases/physiopathology , Repressor Proteins/genetics , Tandem Repeat Sequences/physiology , DNA Methyltransferase 3B
15.
Hum Mutat ; 40(8): 1077-1083, 2019 08.
Article in English | MEDLINE | ID: mdl-31066130

ABSTRACT

Increasing use of next-generation sequencing technologies in clinical diagnostics allows large-scale discovery of genetic variants, but also results in frequent identification of variants of unknown significance (VUSs). Their classification into disease-causing and neutral variants is often hampered by the absence of robust functional tests. Here, we demonstrate that a luciferase reporter assay, in combination with ChIP-qPCR, reliably separates pathogenic ZBTB24 missense variants in the context of immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome from natural variants in healthy individuals and patients of other diseases. Application of our assay to two published ZBTB24 missense VUSs indicates that they are likely not to cause ICF2 syndrome. Furthermore, we show that rare gnomAD ZBTB24 missense variants in key residues of the C2H2-ZF domain lead to a loss of function phenotype that resembles ICF2, suggesting that these individuals are carriers of ICF syndrome. In summary, we have developed a robust functional test to validate missense variants in ZBTB24.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Luciferases/metabolism , Mutation, Missense , Repressor Proteins/genetics , Animals , Cells, Cultured , Face/abnormalities , Genetic Predisposition to Disease , Humans , Luciferases/genetics , Mice , Models, Biological , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Phenotype , Primary Immunodeficiency Diseases/genetics , Protein Domains , Repressor Proteins/chemistry
16.
Philos Trans R Soc Lond B Biol Sci ; 374(1770): 20180126, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30966890

ABSTRACT

It has become clear that in addition to the DNA sequence there is another layer of information, termed epigenetic modifications, that can influence phenotypes and traits. In particular, environmental epigenomics, which addresses the effect of the environment on the epigenome and human health, is becoming an area of great interest for many researchers working in different scientific fields. In this review, we will consider the current evidence that early-life environmental signals can have long-term effects on the epigenome. We will further evaluate how recent technological advances may enable us to unravel the molecular mechanisms underlying these phenomena, which will be crucial for understanding heritability in health and disease. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.


Subject(s)
Epigenesis, Genetic , Life History Traits , Phenotype , Animals , Epigenomics , Humans
17.
Nat Commun ; 9(1): 3738, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30218040

ABSTRACT

X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI.


Subject(s)
DNA Methylation/genetics , X Chromosome Inactivation/genetics , Chromosomal Proteins, Non-Histone/genetics , CpG Islands , DNA-Binding Proteins/genetics , Female , Gene Expression , Gene Expression Profiling , Genetic Variation , Humans , Male , Methyltransferases/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , gamma-Globins/genetics
18.
J Immunol ; 200(8): 2615-2626, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29523656

ABSTRACT

By their interaction with IgG immune complexes, FcγR and complement link innate and adaptive immunity, showing functional redundancy. In complement-deficient mice, IgG downstream effector functions are often impaired, as well as adaptive immunity. Based on a variety of model systems using FcγR-knockout mice, it has been concluded that FcγRs are also key regulators of innate and adaptive immunity; however, several of the model systems underpinning these conclusions suffer from flawed experimental design. To address this issue, we generated a novel mouse model deficient for all FcγRs (FcγRI/II/III/IV-/- mice). These mice displayed normal development and lymphoid and myeloid ontogeny. Although IgG effector pathways were impaired, adaptive immune responses to a variety of challenges, including bacterial infection and IgG immune complexes, were not. Like FcγRIIb-deficient mice, FcγRI/II/III/IV-/- mice developed higher Ab titers but no autoantibodies. These observations indicate a redundant role for activating FcγRs in the modulation of the adaptive immune response in vivo. We conclude that FcγRs are downstream IgG effector molecules with a restricted role in the ontogeny and maintenance of the immune system, as well as the regulation of adaptive immunity.

19.
Proc Natl Acad Sci U S A ; 113(35): E5108-16, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27528681

ABSTRACT

Microrchidia (MORC) proteins are GHKL (gyrase, heat-shock protein 90, histidine kinase, MutL) ATPases that function in gene regulation in multiple organisms. Animal MORCs also contain CW-type zinc finger domains, which are known to bind to modified histones. We solved the crystal structure of the murine MORC3 ATPase-CW domain bound to the nucleotide analog AMPPNP (phosphoaminophosphonic acid-adenylate ester) and in complex with a trimethylated histone H3 lysine 4 (H3K4) peptide (H3K4me3). We observed that the MORC3 N-terminal ATPase domain forms a dimer when bound to AMPPNP. We used native mass spectrometry to show that dimerization is ATP-dependent, and that dimer formation is enhanced in the presence of nonhydrolyzable ATP analogs. The CW domain uses an aromatic cage to bind trimethylated Lys4 and forms extensive hydrogen bonds with the H3 tail. We found that MORC3 localizes to promoters marked by H3K4me3 throughout the genome, consistent with its binding to H3K4me3 in vitro. Our work sheds light on aspects of the molecular dynamics and function of MORC3.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Histones/metabolism , Lysine/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenylyl Imidodiphosphate/chemistry , Adenylyl Imidodiphosphate/metabolism , Animals , Chromatin/genetics , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Histones/chemistry , Histones/genetics , Lysine/chemistry , Lysine/genetics , Methylation , Mice , Models, Molecular , Promoter Regions, Genetic/genetics , Protein Binding , Protein Domains , Protein Multimerization , Zinc Fingers
20.
Elife ; 52016 07 13.
Article in English | MEDLINE | ID: mdl-27410475

ABSTRACT

We previously identified Wiz in a mouse screen for epigenetic modifiers. Due to its known association with G9a/GLP, Wiz is generally considered a transcriptional repressor. Here, we provide evidence that it may also function as a transcriptional activator. Wiz levels are high in the brain, but its function and direct targets are unknown. ChIP-seq was performed in adult cerebellum and Wiz peaks were found at promoters and transcription factor CTCF binding sites. RNA-seq in Wiz mutant mice identified genes differentially regulated in adult cerebellum and embryonic brain. In embryonic brain most decreased in expression and included clustered protocadherin genes. These also decreased in adult cerebellum and showed strong Wiz ChIP-seq enrichment. Because a precise pattern of protocadherin gene expression is required for neuronal development, behavioural tests were carried out on mutant mice, revealing an anxiety-like phenotype. This is the first evidence of a role for Wiz in neural function.


Subject(s)
Behavior, Animal , CCCTC-Binding Factor/metabolism , Cerebellum/physiology , Gene Expression Regulation , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Promoter Regions, Genetic , Animals , Binding Sites , Chromatin Immunoprecipitation , Gene Knockout Techniques , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Protein Binding , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL