Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Biol Chem ; 295(11): 3485-3496, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31932306

ABSTRACT

Hyaluronan (HA) is one of the most prevalent glycosaminoglycans of the vascular extracellular matrix (ECM). Abnormal HA accumulation within blood vessel walls is associated with tissue inflammation and is prominent in most vascular pathological conditions such as atherosclerosis and restenosis. Hyaluronan synthase 2 (HAS2) is the main hyaluronan synthase enzyme involved in HA synthesis and uses cytosolic UDP-glucuronic acid and UDP-GlcNAc as substrates. The synthesis of UDP-glucuronic acid can alter the NAD+/NADH ratio via the enzyme UDP-glucose dehydrogenase, which oxidizes the alcohol group at C6 to the COO- group. Here, we show that HAS2 expression can be modulated by sirtuin 1 (SIRT1), the master metabolic sensor of the cell, belonging to the class of NAD+-dependent deacetylases. Our results revealed the following. 1) Treatments of human aortic smooth muscle cells (AoSMCs) with SIRT1 activators (SRT1720 and resveratrol) inhibit both HAS2 expression and accumulation of pericellular HA coats. 2) Tumor necrosis factor α (TNFα) induced HA-mediated monocyte adhesion and AoSMC migration, whereas SIRT1 activation prevented immune cell recruitment and cell motility by reducing the expression levels of the receptor for HA-mediated motility, RHAMM, and the HA-binding protein TNF-stimulated gene 6 protein (TSG6). 3) SIRT1 activation prevented nuclear translocation of NF-κB (p65), which, in turn, reduced the levels of HAS2-AS1, a long-noncoding RNA that epigenetically controls HAS2 mRNA expression. In conclusion, we demonstrate that both HAS2 expression and HA accumulation by AoSMCs are down-regulated by the metabolic sensor SIRT1.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation , Hyaluronan Synthases/genetics , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , Sirtuin 1/metabolism , Aorta/cytology , Cell Nucleus/drug effects , Cells, Cultured , Cytoprotection/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Hyaluronan Synthases/metabolism , Hyaluronic Acid/metabolism , Inflammation/pathology , Models, Biological , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Protein Transport/drug effects , Resveratrol/pharmacology , Tumor Necrosis Factor-alpha
2.
Glycoconj J ; 34(3): 411-420, 2017 06.
Article in English | MEDLINE | ID: mdl-27744520

ABSTRACT

Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (ß4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of ß4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in ß4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.


Subject(s)
Chondroitin Sulfates/biosynthesis , Dermatan Sulfate/analogs & derivatives , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Heparitin Sulfate/biosynthesis , Hyaluronic Acid/biosynthesis , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Chondroitin Sulfates/antagonists & inhibitors , Chondroitin Sulfates/genetics , Dermatan Sulfate/antagonists & inhibitors , Dermatan Sulfate/biosynthesis , Dermatan Sulfate/genetics , Epithelial Cells/pathology , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Heparitin Sulfate/antagonists & inhibitors , Heparitin Sulfate/genetics , Humans , Hyaluronan Synthases/antagonists & inhibitors , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/antagonists & inhibitors , Hyaluronic Acid/genetics , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Monosaccharide Transport Proteins/antagonists & inhibitors , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , N-Acetyllactosamine Synthase/antagonists & inhibitors , N-Acetyllactosamine Synthase/genetics , N-Acetyllactosamine Synthase/metabolism , Nucleotide Transport Proteins/antagonists & inhibitors , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction
3.
Int J Cell Biol ; 2015: 208303, 2015.
Article in English | MEDLINE | ID: mdl-26448750

ABSTRACT

Cellular microenvironment plays a critical role in several pathologies including atherosclerosis. Hyaluronan (HA) content often reflects the progression of this disease in promoting vessel thickening and cell migration. HA synthesis is regulated by several factors, including the phosphorylation of HA synthase 2 (HAS2) and other covalent modifications including ubiquitination and O-GlcNAcylation. Substrate availability is important in HA synthesis control. Specific drugs reducing the UDP precursors are able to reduce HA synthesis whereas the hexosamine biosynthetic pathway (HBP) increases the concentration of HA precursor UDP-N-acetylglucosamine (UDP-GlcNAc) leading to an increase of HA synthesis. The flux through the HBP in the regulation of HA biosynthesis in human aortic vascular smooth muscle cells (VSMCs) was reported as a critical aspect. In fact, inhibiting O-GlcNAcylation reduced HA production whereas increased O-GlcNAcylation augmented HA secretion. Additionally, O-GlcNAcylation regulates HAS2 gene expression resulting in accumulation of its mRNA after induction of O-GlcNAcylation with glucosamine treatments. The oxidized LDLs, the most common molecules related to atherosclerosis outcome and progression, are also able to induce a strong HA synthesis when they are in contact with vascular cells. In this review, we present recent described mechanisms involved in HA synthesis regulation and their role in atherosclerosis outcome and development.

4.
Glycoconj J ; 32(3-4): 93-103, 2015 May.
Article in English | MEDLINE | ID: mdl-25971701

ABSTRACT

The hyaluronan (HA) polymer is a critical component of extracellular matrix with a remarkable structure: is a linear and unbranched polymer without sulphate or phosphate groups. It is ubiquitous in mammals showing several biological functions, ranging from cell proliferation and migration to angiogenesis and inflammation. For its critical biological functions the amount of HA in tissues is carefully controlled by different mechanisms including covalent modification of the synthetic enzymes and epigenetic control of their gene expression. The concentration of HA is also critical in several pathologies including cancer, diabetes and inflammation. Beside these biological roles, the structural properties of HA allow it to take advantage of its capacity to form gels even at concentration of 1 % producing scaffolds with very promising applications in regenerative medicine as biocompatible material for advanced therapeutic uses. In this review we highlight the biological aspects of HA addressing the mechanisms controlling the HA content in tissues as well as its role in important human pathologies. In the second part of the review we highlight the different use of HA polymers in the modern biotechnology.


Subject(s)
Biotechnology/methods , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Animals , Dietary Supplements , Drug Delivery Systems , Extracellular Matrix/metabolism , Humans , Hyaluronic Acid/administration & dosage , Inflammation/metabolism , Neoplasms/metabolism
5.
J Diabetes Res ; 2015: 167283, 2015.
Article in English | MEDLINE | ID: mdl-25834831

ABSTRACT

Cell microenvironment has a critical role determining cell fate and modulating cell responses to injuries. Hyaluronan (HA) is a ubiquitous extracellular matrix glycosaminoglycan that can be considered a signaling molecule. In fact, interacting with several cell surface receptors can deeply shape cell behavior. In vascular biology, HA triggers smooth muscle cells (SMCs) dedifferentiation which contributes to vessel wall thickening. Furthermore, HA is able to modulate inflammation by altering the adhesive properties of endothelial cells. In hyperglycemic conditions, HA accumulates in vessels and can contribute to the diabetic complications at micro- and macrovasculature. Due to the pivotal role in favoring atherogenesis and neointima formation after injuries, HA could be a new target for cardiovascular pathologies. This review will focus on the recent findings regarding the regulation of HA synthesis in human vascular SMCs. In particular, the effects of the intracellular HA substrates availability, adenosine monophosphate-activated protein kinase (AMPK), and protein O-GlcNAcylation on the main HA synthetic enzyme (i.e., HAS2) will be discussed.


Subject(s)
Diabetes Mellitus/metabolism , Gene Expression Regulation, Enzymologic , Hyaluronic Acid/biosynthesis , Vascular Diseases/metabolism , Acetylglucosamine/metabolism , Acylation , Adenylate Kinase/metabolism , Animals , Cardiovascular Diseases/drug therapy , Cell Adhesion , Cell Differentiation , Humans , Inflammation/metabolism , Microcirculation , Myocytes, Smooth Muscle/cytology
6.
J Biol Chem ; 289(42): 28816-26, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25183006

ABSTRACT

Changes in the microenvironment organization within vascular walls are critical events in the pathogenesis of vascular pathologies, including atherosclerosis and restenosis. Hyaluronan (HA) accumulation into artery walls supports vessel thickening and is involved in many cardiocirculatory diseases. Excessive cytosolic glucose can enter the hexosamine biosynthetic pathway, increase UDP-N-acetylglucosamine (UDP-GlcNAc) availability, and lead to modification of cytosolic proteins via O-linked attachment of the monosaccharide ß-N-GlcNAc (O-GlcNAcylation) from UDP-GlcNAc by the enzyme O-GlcNAc transferase. As many cytoplasmic and nuclear proteins can be glycosylated by O-GlcNAc, we studied whether the expression of the HA synthases that synthesize HA could be controlled by O-GlcNAcylation in human aortic smooth muscle cells. Among the three HAS isoenzymes, only HAS2 mRNA increased after O-GlcNAcylation induced by glucosamine treatments or by inhibiting O-GlcNAc transferase with PUGNAC (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate). We found that the natural antisense transcript of HAS2 (HAS2-AS1) was absolutely necessary to induce the transcription of the HAS2 gene. Moreover, we found that O-GlcNAcylation modulated HAS2-AS1 promoter activation by recruiting the NF-κB subunit p65, but not the HAS2 promoter, whereas HAS2-AS1 natural antisense transcript, working in cis, regulated HAS2 transcription by altering the chromatin structure around the HAS2 proximal promoter via O-GlcNAcylation and acetylation. These results indicate that HAS2 transcription can be finely regulated not only by recruiting transcription factors to the promoter as previously described but also by modulating chromatin accessibility by epigenetic modifications.


Subject(s)
Gene Expression Regulation, Enzymologic , Glucuronosyltransferase/genetics , Acetylglucosamine/chemistry , Animals , Aorta/enzymology , Base Sequence , Cell Nucleus/enzymology , Chromatin/chemistry , Cytoplasm/enzymology , Epigenesis, Genetic , Gene Silencing , Glucuronosyltransferase/physiology , Humans , Hyaluronan Synthases , Male , Mice , Mice, Knockout , Models, Genetic , Molecular Sequence Data , Monosaccharides/chemistry , Myocytes, Smooth Muscle/enzymology , N-Acetylglucosaminyltransferases/chemistry , Promoter Regions, Genetic , RNA, Messenger/metabolism , Transcription, Genetic
7.
Biomed Res Int ; 2014: 606458, 2014.
Article in English | MEDLINE | ID: mdl-25126569

ABSTRACT

Collagen VI and hyaluronan are widely distributed extracellular matrix macromolecules that play a crucial role in tissue development and are highly expressed in cancers. Both hyaluronan and collagen VI are upregulated in breast cancer, generating a microenvironment that promotes tumour progression and metastasis. A growing number of studies show that these two molecules are involved in inflammation and angiogenesis by recruiting macrophages and endothelial cells, respectively. Additionally, collagen VI induces epithelial-mesenchymal transition that is correlated to increased synthesis of hyaluronan in mammary cells. Hyaluronan has also a specific role in cellular functions that depends mainly on the size of the polymer, whereas the effect of collagen VI in tumour progression may be the result of the intact molecule or the C5 peptide of α3(VI) chain, known as endotrophin. Collectively, these findings strongly support the parallel role of these molecules in tumour progression and suggest that they may be used as prognostic factors for the breast cancer treatment.


Subject(s)
Breast Neoplasms/genetics , Collagen Type VI/genetics , Extracellular Matrix/genetics , Hyaluronic Acid/biosynthesis , Breast Neoplasms/pathology , Collagen Type VI/biosynthesis , Epithelial-Mesenchymal Transition/genetics , Extracellular Matrix/pathology , Female , Humans , Hyaluronic Acid/genetics , Hyaluronic Acid/metabolism , Inflammation/genetics , Inflammation/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology
8.
FEBS J ; 281(22): 4980-92, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25040101

ABSTRACT

Cell behavior is determined by both genetic and environmental factors. The cell microenvironment is not only a scene in which various actors play a role, but is itself an active participant, able to influence many cellular responses by binding signaling molecules or by modulating intracellular signaling cascades. Further, extracellular matrix remodeling is a critical step to allow physiological as well as pathological processes. As environmental factors are able to modulate gene expression by epigenetic modifications, this review focuses on new aspects of the regulation of extracellular matrix remodeling enzymes. Moreover, as one of the main components of cell microenvironment is the glycosaminoglycan hyaluronan, novel findings regarding the control of hyaluronan synthesis are discussed in terms of epigenetics and from the post-translational point of view.


Subject(s)
Epigenesis, Genetic , Extracellular Matrix/metabolism , Hyaluronic Acid/metabolism , Animals , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Extracellular Matrix/genetics , Glucuronosyltransferase/metabolism , Histones/metabolism , Humans , Hyaluronan Synthases , Hyaluronic Acid/genetics , MicroRNAs/physiology , Protein Processing, Post-Translational
9.
J R Soc Interface ; 11(95): 20140043, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24647905

ABSTRACT

Animals form groups for many reasons, but there are costs and benefits associated with group formation. One of the benefits is collective memory. In groups on the move, social interactions play a crucial role in the cohesion and the ability to make consensus decisions. When migrating from spawning to feeding areas, fish schools need to retain a collective memory of the destination site over thousands of kilometres, and changes in group formation or individual preference can produce sudden changes in migration pathways. We propose a modelling framework, based on stochastic adaptive networks, that can reproduce this collective behaviour. We assume that three factors control group formation and school migration behaviour: the intensity of social interaction, the relative number of informed individuals and the strength of preference that informed individuals have for a particular migration area. We treat these factors independently and relate the individuals' preferences to the experience and memory for certain migration sites. We demonstrate that removal of knowledgeable individuals or alteration of individual preference can produce rapid changes in group formation and collective behaviour. For example, intensive fishing targeting the migratory species and also their preferred prey can reduce both terms to a point at which migration to the destination sites is suddenly stopped. The conceptual approaches represented by our modelling framework may therefore be able to explain large-scale changes in fish migration and spatial distribution.


Subject(s)
Animal Migration/physiology , Memory , Models, Biological , Social Behavior , Animals
10.
Biochim Biophys Acta ; 1840(8): 2452-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24513306

ABSTRACT

BACKGROUND: Hyaluronan is a critical component of extracellular matrix with several different roles. Besides the contribution to the tissue hydration, mechanical properties and correct architecture, hyaluronan plays important biological functions interacting with different molecules and receptors. SCOPE OF REVIEW: The review addresses the control of hyaluronan synthesis highlighting the critical role of hyaluronan synthase 2 in this context as well as discussing the recent findings related to covalent modifications which influence the enzyme activity. Moreover, the interactions with specific receptors and hyaluronan are described focusing on the importance of polymer size in the modulation of hyaluronan signaling. MAJOR CONCLUSIONS: Due to its biological effects on cells recently described, it is evident how hyaluronan is to be considered not only a passive component of extracellular matrix but also an actor involved in several scenarios of cell behavior. GENERAL SIGNIFICANCE: The effects of metabolism on the control of hyaluronan synthesis both in healthy and pathologic conditions are critical and still not completely understood. The hyaluronan capacity to bind several receptors triggering specific pathways may represent a valid target for new approach in several therapeutic strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.


Subject(s)
Hyaluronic Acid/biosynthesis , Signal Transduction , Animals , Biosynthetic Pathways , Humans , Hyaluronan Receptors/chemistry , Hyaluronan Receptors/metabolism , Hyaluronic Acid/chemistry
11.
Matrix Biol ; 35: 8-13, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24134926

ABSTRACT

Hyaluronan (HA) is a glycosaminoglycan composed by repeating units of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) that is ubiquitously present in the extracellular matrix (ECM) where it has a critical role in the physiology and pathology of several mammalian tissues. HA represents a perfect environment in which cells can migrate and proliferate. Moreover, several receptors can interact with HA at cellular level triggering multiple signal transduction responses. The control of the HA synthesis is therefore critical in ECM assembly and cell biology; in this review we address the metabolic regulation of HA synthesis. In contrast with other glycosaminoglycans, which are synthesized in the Golgi apparatus, HA is produced at the plasma membrane by HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. UDP-GlcUA and UDP-hexosamine availability is critical for the synthesis of GAGs, which is an energy consuming process. AMP activated protein kinase (AMPK), which is considered a sensor of the energy status of the cell and is activated by low ATP:AMP ratio, leads to the inhibition of HA secretion by HAS2 phosphorylation at threonine 110. However, the most general sensor of cellular nutritional status is the hexosamine biosynthetic pathway that brings to the formation of UDP-GlcNAc and intracellular protein glycosylation by O-linked attachment of the monosaccharide ß-N-acetylglucosamine (O-GlcNAcylation) to specific aminoacid residues. Such highly dynamic and ubiquitous protein modification affects serine 221 residue of HAS2 that lead to a dramatic stabilization of the enzyme in the membranes.


Subject(s)
Biosynthetic Pathways/physiology , Extracellular Matrix/metabolism , Glucuronosyltransferase/metabolism , Hyaluronic Acid/biosynthesis , Hyaluronic Acid/metabolism , Models, Molecular , Signal Transduction/physiology , AMP-Activated Protein Kinases/metabolism , Animals , Humans , Hyaluronan Synthases , Models, Biological , Uridine Diphosphate Glucuronic Acid/metabolism , Uridine Diphosphate N-Acetylglucosamine/metabolism
12.
J Biol Chem ; 288(41): 29595-603, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23979132

ABSTRACT

Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 µg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 µg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 µg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.


Subject(s)
Cell Movement/drug effects , Hyaluronic Acid/biosynthesis , Lipoproteins, LDL/pharmacology , Myocytes, Smooth Muscle/drug effects , Antibodies/immunology , Antibodies/pharmacology , Aorta/cytology , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Endoplasmic Reticulum Chaperone BiP , Extracellular Matrix/metabolism , Gene Expression/drug effects , Glucuronosyltransferase/genetics , Humans , Hyaluronan Synthases , Lipoproteins, LDL/metabolism , Monocytes/drug effects , Monocytes/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidation-Reduction , Reverse Transcriptase Polymerase Chain Reaction , Scavenger Receptors, Class E/antagonists & inhibitors , Scavenger Receptors, Class E/immunology , Scavenger Receptors, Class E/metabolism , U937 Cells
13.
FEBS J ; 280(10): 2418-30, 2013 May.
Article in English | MEDLINE | ID: mdl-23452080

ABSTRACT

Down syndrome (DS) is a common birth defect characterized by the trisomy of chromosome 21. DS-affected umbilical cords (UCs) of fetuses show altered architecture of the extracellular matrix. Overexpression of the chromosome 21 genes encoding the collagen type VI (COLVI) chains α1(VI) and α2(VI), COL6A1 and COL6A2, respectively, has also reported to occur in the nuchal skin of DS fetuses. The aim of this study was therefore to evaluate the COLVI content in euploid and DS-affected UCs and human skin fibroblasts, and to investigate the relationships between COLVI and hyaluronan (HA) and HA synthase-2 (HAS2). We found that the UCs of DS fetuses showed denser staining of COLVI and increased COL6A2 expression at both early and term gestational ages. In vitro expression studies in DS-derived fibroblasts showed similarly increased amounts of α1(VI) and α2(VI) chains at the protein and transcriptional level, supporting the hypothesis of the gene dosage effect. Furthermore, increased levels of HA and HAS2 were also found in DS-derived skin fibroblast cultures. Notably, silencing of COL6A2 in DS-derived cells resulted in downregulation of HAS2, with a simultaneous decrease in secreted HA. Exogenous addition of COLVI to normal fibroblasts did not have any effect on HAS2 expression. In conclusion, UCs and skin fibroblasts in DS show significant increases in COLVI and HA; the overexpression of COL6A2 in DS tissue and cells is closely related to the increased expression of HAS2. These data may explain the DS phenotypes and their effects in organ tissue maturation.


Subject(s)
Collagen Type VI/metabolism , Down Syndrome/pathology , Gene Expression Regulation, Enzymologic , Glucuronosyltransferase/metabolism , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cells, Cultured , Collagen Type VI/genetics , Collagen Type VI/pharmacology , Culture Media, Conditioned/metabolism , Down Syndrome/enzymology , Down Syndrome/metabolism , Fetus/enzymology , Fetus/metabolism , Fetus/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Silencing , Gestational Age , Glucuronosyltransferase/genetics , Humans , Hyaluronan Synthases , Hyaluronic Acid/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transfection , Umbilical Cord/pathology
14.
J Biol Chem ; 287(42): 35544-35555, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22887999

ABSTRACT

Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t(½) >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.


Subject(s)
Aorta/metabolism , Chondroitin Sulfates/biosynthesis , Diabetic Angiopathies/metabolism , Glucuronosyltransferase/metabolism , Hyaluronic Acid/biosynthesis , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Uridine Diphosphate N-Acetylglucosamine/metabolism , Amino Acid Substitution , Aorta/pathology , Cell Line , Chondroitin Sulfates/genetics , Diabetic Angiopathies/genetics , Diabetic Angiopathies/pathology , Glucuronosyltransferase/genetics , Glycosylation , Humans , Hyaluronan Synthases , Hyaluronic Acid/genetics , Muscle Proteins/genetics , Muscle, Smooth, Vascular/pathology , Mutation, Missense , Uridine Diphosphate N-Acetylglucosamine/genetics
15.
J Biol Chem ; 286(40): 34497-503, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21768115

ABSTRACT

Smooth muscle cells (SMCs) have a pivotal role in cardiovascular diseases and are responsible for hyaluronan (HA) deposition in thickening vessel walls. HA regulates SMC proliferation, migration, and inflammation, which accelerates neointima formation. We used the HA synthesis inhibitor 4-methylumbelliferone (4-MU) to reduce HA production in human aortic SMCs and found a significant increase of apoptotic cells. Interestingly, the exogenous addition of HA together with 4-MU reduced apoptosis. A similar anti-apoptotic effect was observed also by adding other glycosaminoglycans and glucose to 4-MU-treated cells. Furthermore, the anti-apoptotic effect of HA was mediated by Toll-like receptor 4, CD44, and PI3K but not by ERK1/2.


Subject(s)
Aorta/pathology , Apoptosis , Glucose/metabolism , Glycosaminoglycans/metabolism , Hyaluronic Acid/pharmacology , Hymecromone/analogs & derivatives , Myocytes, Smooth Muscle/cytology , Cell Movement , Cell Proliferation , Glycoproteins/metabolism , Humans , Hyaluronan Receptors/biosynthesis , Hymecromone/pharmacology , Inflammation , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/metabolism , Toll-Like Receptor 4/metabolism
17.
J Biol Chem ; 286(10): 7917-7924, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21228273

ABSTRACT

Hyaluronan (HA) is an extracellular matrix glycosaminoglycan (GAG) involved in cell motility, proliferation, tissue remodeling, development, differentiation, inflammation, tumor progression, and invasion and controls vessel thickening in cardiovascular diseases. Therefore, the control of HA synthesis could permit the fine-tuning of cell behavior, but the mechanisms that regulate HA synthesis are largely unknown. Recent studies suggest that the availability of the nucleotide-sugar precursors has a critical role. Because the formation of UDP-sugars is a highly energetically demanding process, we have analyzed whether the energy status of the cell could control GAG production. AMP-activated protein kinase (AMPK) is the main ATP/AMP sensor of mammalian cells, and we mimicked an energy stress by treating human aortic smooth muscle cells (AoSMCs) with the AMPK activators 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside and metformin. Under these conditions, HA synthesis, but not that of the other GAGs, was greatly reduced. We confirmed the inhibitory effect of AMPK using a specific inhibitor and knock-out cell lines. We found that AMPK phosphorylated Thr-110 of human HAS2, which inhibits its enzymatic activity. In contrast, the other two HAS isoenzymes (HAS1 and HAS3) were not modified by the kinase. The reduction of HA decreased the ability of AoSMCs to proliferate, migrate, and recruit immune cells, thereby reducing the pro-atherosclerotic AoSMC phenotype. Interestingly, such effects were not recovered by treatment with exogenous HA, suggesting that AMPK can block the pro-atherosclerotic signals driven by HA by interaction with its receptors.


Subject(s)
Aorta/metabolism , Glucuronosyltransferase/metabolism , Hyaluronic Acid/biosynthesis , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , AMP-Activated Protein Kinases , Aorta/cytology , Cell Line , Cell Movement/physiology , Cell Proliferation , Gene Knockdown Techniques , Glucuronosyltransferase/genetics , Humans , Hyaluronan Synthases , Hyaluronic Acid/genetics , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Signal Transduction/physiology , Stress, Physiological/physiology
18.
J Biol Chem ; 285(32): 24639-45, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20522558

ABSTRACT

Chronic inflammation is now accepted to have a critical role in the onset of several diseases as well as in vascular pathology, where macrophage transformation into foam cells contributes in atherosclerotic plaque formation. Endothelial cells (EC) have a critical function in recruitment of immune cells, and proinflammatory cytokines drive the specific expression of several adhesion proteins. During inflammatory responses several cells produce hyaluronan matrices that promote monocyte/macrophage adhesion through interactions with the hyaluronan receptor CD44 present on inflammatory cell surfaces. In this study, we used human umbilical chord vein endothelial cells (HUVECs) as a model to study the mechanism that regulates hyaluronan synthesis after treatment with proinflammatory cytokines. We found that interleukin 1beta and tumor necrosis factors alpha and beta, but not transforming growth factors alpha and beta, strongly induced HA synthesis by NF-kappaB pathway. This signaling pathway mediated hyaluronan synthase 2 (HAS2) mRNA expression without altering other glycosaminoglycan metabolism. Moreover, we verified that U937 monocyte adhesion on stimulated HUVECs depends strongly on hyaluronan, and transfection with short interference RNA of HAS2 abrogates hyaluronan synthesis revealing the critical role of HAS2 in this process.


Subject(s)
Cytokines/metabolism , Endothelial Cells/cytology , Gene Expression Regulation , Glucuronosyltransferase/metabolism , Hyaluronic Acid/metabolism , Monocytes/cytology , NF-kappa B/metabolism , Cell Adhesion , Humans , Hyaluronan Receptors/biosynthesis , Hyaluronan Synthases , Interleukin-1beta/biosynthesis , Signal Transduction , U937 Cells , Umbilical Cord/cytology
19.
J Biol Chem ; 284(44): 30684-94, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19737932

ABSTRACT

Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.


Subject(s)
Cell Membrane/chemistry , Glucuronosyltransferase/metabolism , Anti-Bacterial Agents/pharmacology , Cell Fractionation , Cell Line , Glucuronosyltransferase/analysis , Glycosylation , Humans , Hyaluronan Synthases , Phosphorylation , Protein Processing, Post-Translational , Tunicamycin/pharmacology
20.
Glycobiology ; 19(5): 537-46, 2009 May.
Article in English | MEDLINE | ID: mdl-19240269

ABSTRACT

Extracellular matrix remodeling after proatherosclerotic injury involves an increase in hyaluronan (HA) that is coupled with vascular smooth muscle cell (SMC) migration, proliferation, and with neointima formation. As such events are dependent on HA, in this study we assessed the effects on SMC behavior of 4-methylumbelliferone (4-MU). As previously described in other cell types, 4-MU reduced HA in cultures of primary human aortic SMCs (AoSMCs) as well as the cellular content of the HA precursor UDP-glucuronic acid. We found that SMCs increased UDP-glucuronyl transferase 1 enzymes, which can reduce the cellular content of UDP-glucuronic acid confirming that the availability of the UDP-sugar substrates can regulate HA synthesis. Interestingly, we reported that 4-MU reduced the transcripts coding for the three HA synthases as well as UDP glucose pyrophosphorylase and dehydrogenase. As HA synthase transcript reduction is common to other cell types, the 4-MU effect on gene expression may be considered a mechanism for HA synthesis inhibition. Moreover, we showed that 4-MU strongly inhibits AoSMCs migration, which was restored by the addition of exogenous HA indicating that the rescuing depends on the interaction of HA with its receptor CD44. Besides the decrease in HA synthesis and cell migration, 4-MU reduced AoSMCs proliferation, indicating that 4-MU may exert a vasoprotective effect.


Subject(s)
Aorta/physiology , Cell Movement/physiology , Hyaluronic Acid/biosynthesis , Hymecromone/analogs & derivatives , Matrix Metalloproteinase 2/metabolism , Myocytes, Smooth Muscle/physiology , Aorta/cytology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Glucuronosyltransferase/metabolism , Humans , Hymecromone/pharmacology , Myocytes, Smooth Muscle/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...