Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
PLoS Biol ; 21(10): e3002341, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37883333

ABSTRACT

There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism.


Subject(s)
Antibodies , Bacteriophage T4 , Animals , Mice , Humans , Bacteriophage T4/genetics , Cell Cycle , DNA , Mammals/genetics
2.
Front Immunol ; 13: 974210, 2022.
Article in English | MEDLINE | ID: mdl-36275684

ABSTRACT

The zoonotic H7N9 avian influenza (AI) virus first emerged in 2013 as a low pathogenic (LPAI) strain, and has repeatedly caused human infection resulting in severe respiratory illness and a mortality of ~39% (>600 deaths) across five epidemic waves. This virus has circulated in poultry with little to no discernible clinical signs, making detection and control difficult. Contrary to published data, our group has observed a subset of specific pathogen free chickens infected with the H7N9 virus succumb to disease, showing clinical signs consistent with highly pathogenic AI (HPAI). Viral genome sequencing revealed two key mutations had occurred following infection in the haemagglutinin (HA 226 L>Q) and nucleoprotein (NP 373 A>T) proteins. We further investigated the impact of the NP mutation and demonstrated that only chickens bearing a single nucleotide polymorphism (SNP) in their IFITM1 gene were susceptible to the H7N9 virus. Susceptible chickens demonstrated a distinct loss of CD8+ T cells from the periphery as well as a dysregulation of IFNγ that was not observed for resistant chickens, suggesting a role for the NP mutation in altered T cell activation. Alternatively, it is possible that this mutation led to altered polymerase activity, as the mutation occurs in the NP 360-373 loop which has been previously show to be important in RNA binding. These data have broad ramifications for our understanding of the pathobiology of AI in chickens and humans and provide an excellent model for investigating the role of antiviral genes in a natural host species.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Animals , Humans , Influenza in Birds/genetics , Influenza in Birds/epidemiology , Influenza A Virus, H7N9 Subtype/genetics , Chickens/genetics , Hemagglutinins/genetics , Nucleoproteins/genetics , CD8-Positive T-Lymphocytes/pathology , Mutation , Antiviral Agents , RNA
3.
PLoS Pathog ; 18(5): e1010533, 2022 05.
Article in English | MEDLINE | ID: mdl-35576230

ABSTRACT

Antagonism of the interferon (IFN)-mediated antiviral state is critical to infection by rabies virus (RABV) and other viruses, and involves interference in the IFN induction and signaling pathways in infected cells, as well as deactivation of the antiviral state in cells previously activated by IFN. The latter is required for viral spread in the host, but the precise mechanisms involved and roles in RABV pathogenesis are poorly defined. Here, we examined the capacity of attenuated and pathogenic strains of RABV that differ only in the IFN-antagonist P protein to overcome an established antiviral state. Importantly, P protein selectively targets IFN-activated phosphorylated STAT1 (pY-STAT1), providing a molecular tool to elucidate specific roles of pY-STAT1. We find that the extended antiviral state is dependent on a low level of pY-STAT1 that appears to persist at a steady state through ongoing phosphorylation/dephosphorylation cycles, following an initial IFN-induced peak. P protein of pathogenic RABV binds and progressively accumulates pY-STAT1 in inactive cytoplasmic complexes, enabling recovery of efficient viral replication over time. Thus, P protein-pY-STAT1 interaction contributes to 'disarming' of the antiviral state. P protein of the attenuated RABV is defective in this respect, such that replication remains suppressed over extended periods in cells pre-activated by IFN. These data provide new insights into the nature of the antiviral state, indicating key roles for residual pY-STAT1 signaling. They also elucidate mechanisms of viral deactivation of antiviral responses, including specialized functions of P protein in selective targeting and accumulation of pY-STAT1.


Subject(s)
Antiviral Agents , Rabies virus , Antiviral Agents/pharmacology , Interferons/metabolism , Phosphorylation , Rabies virus/metabolism , STAT1 Transcription Factor/metabolism , Virus Replication
4.
Viruses ; 13(5)2021 05 04.
Article in English | MEDLINE | ID: mdl-34064444

ABSTRACT

Bats are reservoirs of many pathogenic viruses, including the lyssaviruses rabies virus (RABV) and Australian bat lyssavirus (ABLV). Lyssavirus strains are closely associated with particular host reservoir species, with evidence of specific adaptation. Associated phenotypic changes remain poorly understood but are likely to involve phosphoprotein (P protein), a key mediator of the intracellular virus-host interface. Here, we examine the phenotype of P protein of ABLV, which circulates as two defined lineages associated with frugivorous and insectivorous bats, providing the opportunity to compare proteins of viruses adapted to divergent bat species. We report that key functions of P protein in the antagonism of interferon/signal transducers and activators of transcription 1 (STAT1) signaling and the capacity of P protein to undergo nuclear trafficking differ between lineages. Molecular mapping indicates that these differences are functionally distinct and appear to involve modulatory effects on regulatory regions or structural impact rather than changes to defined interaction sequences. This results in partial but significant phenotypic divergence, consistent with "fine-tuning" to host biology, and with potentially distinct properties in the virus-host interface between bat families that represent key zoonotic reservoirs.


Subject(s)
Biodiversity , Chiroptera/virology , Lyssavirus/physiology , Phenotype , Amino Acid Sequence , Animals , Disease Reservoirs , Host-Pathogen Interactions , Interferons/metabolism , Lyssavirus/classification , STAT1 Transcription Factor/metabolism , Signal Transduction , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
5.
Curr Top Microbiol Immunol ; 419: 191-213, 2018.
Article in English | MEDLINE | ID: mdl-28674944

ABSTRACT

Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are zoonotic RNA viruses that cause lethal disease in humans and are designated as Biosafety Level 4 (BSL4) agents. Moreover, henipaviruses belong to the same group of viruses that cause disease more commonly in humans such as measles, mumps and respiratory syncytial virus. Due to the relatively recent emergence of the henipaviruses and the practical constraints of performing functional genomics studies at high levels of containment, our understanding of the henipavirus infection cycle is incomplete. In this chapter we describe recent loss-of-function (i.e. RNAi) functional genomics screens that shed light on the henipavirus-host interface at a genome-wide level. Further to this, we cross-reference RNAi results with studies probing host proteins targeted by henipavirus proteins, such as nuclear proteins and immune modulators. These functional genomics studies join a growing body of evidence demonstrating that nuclear and nucleolar host proteins play a crucial role in henipavirus infection. Furthermore these studies will underpin future efforts to define the role of nucleolar host-virus interactions in infection and disease.


Subject(s)
Genomics , Hendra Virus/immunology , Henipavirus Infections/genetics , Henipavirus Infections/immunology , Host-Pathogen Interactions , MicroRNAs/metabolism , Nipah Virus/immunology , Nuclear Proteins/metabolism , Henipavirus Infections/metabolism , Henipavirus Infections/virology , Humans , MicroRNAs/genetics , Nuclear Proteins/genetics
6.
Sci Rep ; 7(1): 7431, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785041

ABSTRACT

Hendra virus (HeV) is an emerging zoonotic pathogen harbored by Australian mainland flying foxes. HeV infection can cause lethal disease in humans and horses, and to date all cases of human HeV disease have resulted from contact with infected horses. Currently, diagnosis of acute HeV infections in horses relies on the productive phase of infection when virus shedding may occur. An assay that identifies infected horses during the preclinical phase of infection would reduce the risk of zoonotic viral transmission during management of HeV outbreaks. Having previously shown that the host microRNA (miR)-146a is upregulated in the blood of HeV-infected horses days prior to the detection of viremia, we have profiled miRNAs at the transcriptome-wide level to comprehensively assess differences between infected and uninfected horses. Next-generation sequencing and the miRDeep2 algorithm identified 742 mature miRNA transcripts corresponding to 593 miRNAs in whole blood of six horses (three HeV-infected, three uninfected). Thirty seven miRNAs were differentially expressed in infected horses, two of which were validated by qRT-PCR. This study describes a methodology for the transcriptome-wide profiling of miRNAs in whole blood and supports the notion that measuring host miRNA expression levels may aid infectious disease diagnosis in the future.


Subject(s)
Circulating MicroRNA/genetics , Gene Expression Profiling/veterinary , Henipavirus Infections/veterinary , Horse Diseases/diagnosis , Horses/genetics , Animals , Australia , Circulating MicroRNA/blood , Early Diagnosis , Gene Expression Regulation , Hendra Virus/pathogenicity , Henipavirus Infections/blood , Henipavirus Infections/diagnosis , Henipavirus Infections/genetics , High-Throughput Nucleotide Sequencing/veterinary , Horse Diseases/blood , Horse Diseases/genetics , Horses/blood , Sequence Analysis, RNA/veterinary
7.
PLoS Pathog ; 12(10): e1005974, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27783670

ABSTRACT

Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.


Subject(s)
Henipavirus Infections/genetics , MicroRNAs/genetics , Virus Internalization , Animals , Ferrets , Fluorescent Antibody Technique , Genome-Wide Association Study , Henipavirus , High-Throughput Nucleotide Sequencing , Horses , Humans , Real-Time Polymerase Chain Reaction
8.
PLoS Pathog ; 12(3): e1005478, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27010548

ABSTRACT

Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Henipavirus Infections/virology , Nipah Virus/enzymology , Animals , Chlorocebus aethiops , Chromosomal Proteins, Non-Histone/genetics , HeLa Cells , Hendra Virus/metabolism , Humans , Mutation , Nipah Virus/genetics , Nipah Virus/pathogenicity , RNA, Small Interfering , Vero Cells , Viral Matrix Proteins/metabolism
10.
J Innate Immun ; 7(1): 102-12, 2015.
Article in English | MEDLINE | ID: mdl-25277331

ABSTRACT

IRF8 (interferon-regulatory factor-8) plays a critical role in regulating myeloid cell differentiation. However, the role of this transcription factor in the development of Ly6C+ inflammatory monocytes and their migration to the infected brain has not been examined. We have previously shown that West Nile virus (WNV) infection of wild-type (WT) mice triggers a significant increase in numbers of Ly6C+ monocytes in the bone marrow. These cells traffic via the blood to the infected brain, where they give rise to proinflammatory macrophages. Here, we show that WNV-infected IRF8-deficient (IRF8-/-) mice had significantly reduced numbers of Ly6C+ monocytes in the periphery, with few of these cells found in the blood. Furthermore, low numbers of inflammatory monocyte-derived macrophages were observed in the brains of IRF8-/- mice throughout infection. Adoptive transfer of IRF8-/- Ly6C+ monocytes demonstrated that these cells were intrinsically unable to traffic to the inflamed brain. Low expression of the chemokine receptor CCR2 and integrin VLA-4 by IRF8-/- monocytes likely contributed to this defect, as the interactions between these proteins and their ligands are critical for monocyte egress and migration to inflammatory foci. These data highlight a critical role for IRF8 in inflammatory monocyte differentiation and migration during WNV infection.


Subject(s)
Brain/immunology , Cell Movement/immunology , Interferon Regulatory Factors/deficiency , Monocytes/immunology , West Nile Fever/immunology , West Nile virus/immunology , Animals , Antigens, Ly/genetics , Antigens, Ly/immunology , Brain/pathology , Brain/virology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Movement/genetics , Inflammation/genetics , Inflammation/microbiology , Inflammation/pathology , Integrin alpha4beta1/genetics , Integrin alpha4beta1/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , Monocytes/pathology , Receptors, CCR2/genetics , Receptors, CCR2/immunology , West Nile Fever/genetics , West Nile Fever/pathology
11.
Sci Transl Med ; 6(219): 219ra7, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24431111

ABSTRACT

Inflammatory monocyte-derived effector cells play an important role in the pathogenesis of numerous inflammatory diseases. However, no treatment option exists that is capable of modulating these cells specifically. We show that infused negatively charged, immune-modifying microparticles (IMPs), derived from polystyrene, microdiamonds, or biodegradable poly(lactic-co-glycolic) acid, were taken up by inflammatory monocytes, in an opsonin-independent fashion, via the macrophage receptor with collagenous structure (MARCO). Subsequently, these monocytes no longer trafficked to sites of inflammation; rather, IMP infusion caused their sequestration in the spleen through apoptotic cell clearance mechanisms and, ultimately, caspase-3-mediated apoptosis. Administration of IMPs in mouse models of myocardial infarction, experimental autoimmune encephalomyelitis, dextran sodium sulfate-induced colitis, thioglycollate-induced peritonitis, and lethal flavivirus encephalitis markedly reduced monocyte accumulation at inflammatory foci, reduced disease symptoms, and promoted tissue repair. Together, these data highlight the intricate interplay between scavenger receptors, the spleen, and inflammatory monocyte function and support the translation of IMPs for therapeutic use in diseases caused or potentiated by inflammatory monocytes.


Subject(s)
Inflammation/immunology , Inflammation/pathology , Microspheres , Monocytes/immunology , Animals , Apoptosis , Brain/pathology , Cell Movement , Cell Survival , Colitis/pathology , Colitis/prevention & control , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Female , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/prevention & control , Kidney/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Myocardium/pathology , Particle Size , Peritoneum/pathology , Polystyrenes/chemistry , Receptors, Immunologic/metabolism , Reperfusion Injury/prevention & control , Spleen/pathology , West Nile Fever
12.
Nat Rev Immunol ; 13(12): 851-61, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24157573

ABSTRACT

Zoonotic viruses that emerge from wildlife and domesticated animals pose a serious threat to human and animal health. In many instances, mouse models have improved our understanding of the human immune response to infection; however, when dealing with emerging zoonotic diseases, they may be of limited use. This is particularly the case when the model fails to reproduce the disease status that is seen in the natural reservoir, transmission species or human host. In this Review, we discuss how researchers are placing more emphasis on the study of the immune response to zoonotic infections in the natural reservoir hosts and spillover species. Such studies will not only lead to a greater understanding of how these infections induce variable disease and immune responses in distinct species but also offer important insights into the evolution of mammalian immune systems.


Subject(s)
Disease Reservoirs/virology , Host-Pathogen Interactions , Zoonoses/immunology , Zoonoses/virology , Animals , Disease Reservoirs/veterinary , Humans , Mice , Models, Animal , Physiology, Comparative , Zoonoses/transmission
13.
Dev Comp Immunol ; 41(3): 463-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23707787

ABSTRACT

The importance of poultry, particularly chicken, as a food source continues to increase globally. Moreover, zoonotic infectious diseases such as avian influenza virus not only continue to impact poultry production, but also pose an increasing threat to public health. This review discusses the importance of poultry in both agricultural and public health arenas. Recent developments in avian immunology are described, with an emphasis on host-pathogen interactions and noting differences from mammalian systems. Next generation technologies including functional genomics and targeted gene disruption (e.g. zinc finger nucleases and meganucleases) are discussed as new approaches for not only understanding immune responses in poultry, but also as novel disease intervention strategies.


Subject(s)
Allergy and Immunology/trends , Chickens/genetics , Chickens/immunology , Poultry Diseases/immunology , Virus Diseases/veterinary , Animals , Animals, Genetically Modified , Chickens/virology , Deoxyribonucleases/genetics , Deoxyribonucleases/immunology , Gene Silencing , Host-Pathogen Interactions , Humans , Poultry Diseases/genetics , Poultry Diseases/prevention & control , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/prevention & control , Zinc Fingers
14.
J Virol ; 87(7): 3782-91, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23345523

ABSTRACT

Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease.


Subject(s)
Hendra Virus/physiology , MicroRNAs/metabolism , Virus Replication/physiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , DNA-Binding Proteins , HeLa Cells , Humans , I-kappa B Proteins/metabolism , NF-kappa B/metabolism , RNA Interference , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
15.
Indian J Med Res ; 138(5): 632-47, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24434318

ABSTRACT

Mosquito-borne flaviviruses are a major current and emerging threat, affecting millions of people worldwide. Global climate change, combined with increasing proximity of humans to animals and mosquito vectors by expansion into natural habitats, coupled with the increase in international travel, have resulted in significant spread and concomitant increase in the incidence of infection and severe disease. Although neuroinvasive disease has been well described for some viral infections such as Japanese Encephalitis virus (JEV) and West Nile virus (WNV), others such as dengue virus (DENV) have recently displayed an emerging pattern of neuroinvasive disease, distinct from the previously observed, systemically-induced encephalomyelopathy. In this setting, the immune response is a crucial component of host defence, in preventing viral dissemination and invasion of the central nervous system (CNS). However, subversion of the anti-viral activities of macrophages by flaviviruses can facilitate viral replication and spread, enhancing the intensity of immune responses, leading to severe immune-mediated disease which may be further exacerbated during the subsequent infection with some flaviviruses. Furthermore, in the CNS myeloid cells may be responsible for inducing specific inflammatory changes, which can lead to significant pathological damage during encephalitis. The interaction of virus and cells of the myeloid lineage is complex, and this interaction is likely responsible at least in part, for crucial differences between viral clearance and pathology. Recent studies on the role of myeloid cells in innate immunity and viral control, and the mechanisms of evasion and subversion used by flaviviruses are rapidly advancing our understanding of the immunopathological mechanisms involved in flavivirus encephalitis and will lead to the development of therapeutic strategies previously not considered.


Subject(s)
Encephalitis/immunology , Flavivirus Infections/immunology , Immunity, Innate , Macrophages/immunology , Animals , Dengue Virus/immunology , Dengue Virus/pathogenicity , Encephalitis/virology , Encephalitis Virus, Japanese/immunology , Encephalitis Virus, Japanese/pathogenicity , Flavivirus/immunology , Flavivirus/pathogenicity , Flavivirus Infections/transmission , Flavivirus Infections/virology , Humans , Myeloid Cells/immunology , West Nile virus/immunology , West Nile virus/pathogenicity
16.
J Neuroinflammation ; 9: 270, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23244217

ABSTRACT

Monocytes are a heterogeneous population of bone marrow-derived cells that are recruited to sites of infection and inflammation in many models of human diseases, including those of the central nervous system (CNS). Ly6Chi/CCR2(hi) inflammatory monocytes have been identified as the circulating precursors of brain macrophages, dendritic cells and arguably microglia in experimental autoimmune encephalomyelitis; Alzheimer's disease; stroke; and more recently in CNS infection caused by Herpes simplex virus, murine hepatitis virus, Theiler's murine encephalomyelitis virus, Japanese encephalitis virus and West Nile virus. The precise differentiation pathways and functions of inflammatory monocyte-derived populations in the inflamed CNS remains a contentious issue, especially in regard to the existence of monocyte-derived microglia. Furthermore, the contributions of monocyte-derived subsets to viral clearance and immunopathology are not well-defined. Thus, understanding the pathways through which inflammatory monocytes migrate to the brain and their functional capacity within the CNS is critical to inform future therapeutic strategies. This review discusses some of the key aspects of inflammatory monocyte trafficking to the brain and addresses the role of these cells in viral encephalitis.


Subject(s)
Brain Infarction/pathology , Cytokines/metabolism , Encephalitis, Viral/pathology , Monocytes/pathology , Animals , Bone Marrow Cells/pathology , Brain Infarction/complications , Brain Infarction/immunology , Brain Infarction/virology , Cell Differentiation , Encephalitis, Viral/complications , Humans , Monocytes/classification , Monocytes/immunology
17.
J Neuroinflammation ; 9: 246, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23111065

ABSTRACT

Infiltration of Ly6C(hi) monocytes from the blood is a hallmark of viral encephalitis. In mice with lethal encephalitis caused by West Nile virus (WNV), an emerging neurotropic flavivirus, inhibition of Ly6C(hi) monocyte trafficking into the brain by anti-very late antigen (VLA)-4 integrin antibody blockade at the time of first weight loss and leukocyte influx resulted in long-term survival of up to 60% of infected mice, with subsequent sterilizing immunity. This treatment had no effect on viral titers but appeared to be due to inhibition of Ly6C(hi) macrophage immigration. Although macrophages isolated from the infected brain induced WNV-specific CD4(+) T-cell proliferation, T cells did not directly contribute to pathology, but are likely to be important in viral control, as antibody-mediated T-cell depletion could not reproduce the therapeutic benefit of anti-VLA-4. Instead, 70% of infiltrating inflammatory monocyte-derived macrophages were found to be making nitric oxide (NO). Furthermore, aminoguanidine-mediated inhibition of induced NO synthase activity in infiltrating macrophages significantly prolonged survival, indicating involvement of NO in the immunopathology. These data show for the first time the therapeutic effects of temporally targeting pathogenic NO-producing macrophages during neurotropic viral encephalitis.


Subject(s)
Integrin alpha4beta1/immunology , Integrin alpha4beta1/metabolism , Macrophages/immunology , Macrophages/metabolism , West Nile Fever , Animals , Antigens, CD/metabolism , Brain/pathology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Disease Models, Animal , Female , Gene Expression Regulation, Viral/physiology , Glial Fibrillary Acidic Protein/metabolism , Integrins/genetics , Integrins/metabolism , Lymphocyte Function-Associated Antigen-1/genetics , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophages/virology , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/immunology , Nitric Oxide Synthase Type II , West Nile Fever/immunology , West Nile Fever/metabolism , West Nile Fever/pathology
18.
PLoS One ; 7(11): e49851, 2012.
Article in English | MEDLINE | ID: mdl-23166780

ABSTRACT

IFN regulatory factor (IRF) 8 is a transcription factor that has a key role in the cellular response to IFN-γ and is pivotal in myeloid cell differentiation. Whether IRF8 plays a role in the development and function of microglia, the tissue-resident myeloid cells of the brain, is unknown. Here, we show IRF8 is a constitutively produced nuclear factor in microglia, which suggested that IRF8 might also be a key homeostatic transcriptional determinant of the microglial cell phenotype. In support of this, in mice with a targeted disruption of the IRF8 gene, microglia were increased in number and showed gross alterations in morphology and surface area. In situ analysis of some key myeloid markers revealed that IRF8-deficient microglia had significantly reduced levels of Iba1, but increased levels of CD206 (mannose receptor) and F4/80 as well as increased tomato lectin binding. Analysis of microglia ex vivo revealed IRF8-deficient microglia had significantly increased levels of CD45, CD11b and F4/80, but significantly decreased levels of the chemokine receptors CCR2, CCR5 and CX3CR1. The known involvement of some of these molecular markers in membrane dynamics and phagocytosis led us to examine the phagocytic capacity of cultured IRF8-deficient microglia, however, this was found to be similar to wild type microglia. We conclude IRF8 is a constitutively produced nuclear factor in resident microglia of the CNS being a crucial transcriptional determinant of the phenotype of these cells in the healthy brain.


Subject(s)
Interferon Regulatory Factors/genetics , Microglia/metabolism , Animals , Brain/metabolism , CD11b Antigen/metabolism , Interferon Regulatory Factors/metabolism , Interferon-gamma/metabolism , Mice , Mice, Knockout , Microglia/cytology , Microglia/pathology , Phagocytosis/genetics
19.
Antivir Ther ; 13(6): 821-32, 2008.
Article in English | MEDLINE | ID: mdl-18839783

ABSTRACT

BACKGROUND: Human metapneumovirus (hMPV) is a major respiratory viral pathogen in young children, elderly individuals and immunocompromised patients. Despite its major effects related to bronchiolitis, pneumonia and its potential role in recurrent wheezing episodes, there is still no commercial treatment or vaccine available against this paramyxovirus. METHODS: We tested a therapeutic strategy for hMPV that was based on RNA interference. RESULTS: An hMPV genome-wide search for small interfering RNAs (siRNAs) by computational analysis revealed 200 potentially effective 21-mer siRNAs. Initial screening with a luciferase assay identified 57 siRNAs of interest. Further evaluation of their inhibitory potential against the four hMPV subgroups by quantitative real-time reverse transcriptase PCR and plaque immunoassay identified two highly potent siRNAs with 50% inhibitory concentration (IC50) values in the subnanomolar range. siRNA45 targets the nucleoprotein messenger RNA (mRNA) and had IC50 values <0.078 nM against representative strains from the four hMPV subgroups, whereas siRNA60, which targets the phosphoprotein mRNA, had IC50 values between 0.090-<0.078 nM against the same panel of hMPV strains. Longer25/27-mer siRNAs known as Dicer substrates designed from the top two siRNA candidates were also evaluated and were at least as effective as their corresponding 21-mer siRNAs. Interestingly, the presence of one or two nucleotide mismatches in the target mRNA sequence of some hMPV subgroups did not always affect hMPV inhibition in vitro. CONCLUSIONS: We successfully identified two highly efficient siRNAs against hMPV targeting essential components of the hMPV replication complex.


Subject(s)
Metapneumovirus/drug effects , Paramyxoviridae Infections/therapy , RNA, Small Interfering/pharmacology , Virus Replication/drug effects , Animals , Base Sequence , Cell Line , Humans , Inhibitory Concentration 50 , Metapneumovirus/genetics , Metapneumovirus/physiology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , RNA, Viral/genetics , Transfection , Virus Replication/genetics
20.
Antimicrob Agents Chemother ; 52(1): 279-87, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17967906

ABSTRACT

Human metapneumovirus (hMPV) can cause acute upper and lower respiratory tract infections that are particularly severe in young children, elderly subjects, and immunocompromised patients. To date, no treatments or vaccines are available for hMPV infections. Our objective was to assess the inhibitory potential of several peptides derived from the heptad repeat A and B (HRA and HRB) domains of the hMPV fusion protein. Nine candidate peptides were expressed in Escherichia coli or obtained synthetically and tested in vitro and in an animal model. Excellent in vitro inhibition of an hMPV strain of the A1 subgroup was obtained with five peptides, with 50% inhibitory concentrations ranging from 1.4 nM to 3.3 microM. One peptide, HRA2, displayed very potent activity against all four hMPV subgroups. It was also moderately active against human respiratory syncytial virus (strain A2) but displayed no activity against human parainfluenza virus type 3. BALB/c mice that received the HRA2 peptide and a lethal hMPV intranasal challenge simultaneously were completely protected from clinical symptoms and mortality. On day 5 postinfection, HRA2-treated mice had undetectable lung viral loads which were significantly less than those of untreated mice (3 x 10(4) 50% tissue culture infective doses/lung). Pulmonary inflammation, levels of proinflammatory cytokines/chemokines (RANTES, gamma interferon, and monocyte chemoattractant protein 1) and airway obstruction were also significantly decreased in HRA2-treated mice. The results of this study demonstrate that potent antivirals can be derived from the hMPV fusion protein HR domains. Moreover, hMPV, compared to other paramyxoviruses and to the human immunodeficiency virus, seems to be more susceptible to HRA- than HRB-derived peptides.


Subject(s)
Antiviral Agents/pharmacology , Membrane Fusion/drug effects , Metapneumovirus/drug effects , Paramyxoviridae Infections/drug therapy , Peptides/pharmacology , Viral Fusion Proteins/chemistry , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Cell Line , Cell Line, Tumor , Female , Humans , Inhibitory Concentration 50 , Metapneumovirus/pathogenicity , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Paramyxoviridae Infections/virology , Peptides/chemistry , Peptides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...