Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sci Adv ; 9(32): eadg9781, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37566656

ABSTRACT

Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine.


Subject(s)
Endothelial Cells , Mechanotransduction, Cellular , Mice , Animals , Mechanotransduction, Cellular/physiology , Tissue Engineering/methods , Morphogenesis , Cell Differentiation , Extracellular Matrix
2.
Bioanalysis ; 14(14): 985-1004, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36066044

ABSTRACT

Background: Industry-standard guidance on method development and validation of hybrid LC-MS/MS assays for protein biomarkers, particularly on evaluation of parallelism, is lacking. Methods: Using a protein endogenous to humans and mice as a model analyte, a quantitative hybrid LC-MS/MS workflow was developed using a surrogate matrix approach with a recombinant form of the protein as the calibrant. Results: The developed workflow identified a surrogate matrix, established parallelism between the surrogate and authentic matrices and assessed parallelism between the recombinant and authentic forms of the protein. The final method was qualified using precision and accuracy with recovery assessments. Conclusion: The established workflow can be used in future bioanalytical studies to develop effective hybrid LC-MS/MS methods for endogenous protein biomarkers.


Subject(s)
Proteins , Tandem Mass Spectrometry , Animals , Biomarkers/metabolism , Chromatography, Liquid/methods , Humans , Mice , Tandem Mass Spectrometry/methods , Workflow
3.
Arterioscler Thromb Vasc Biol ; 41(1): e18-e32, 2021 01.
Article in English | MEDLINE | ID: mdl-33207933

ABSTRACT

OBJECTIVE: Exposure of the arterial endothelium to low and disturbed flow is a risk factor for the erosion and rupture of atherosclerotic plaques and aneurysms. Circulating and locally produced proteins are known to contribute to an altered composition of the extracellular matrix at the site of lesions, and to contribute to inflammatory processes within the lesions. We have previously shown that alternative splicing of FN (fibronectin) protects against flow-induced hemorrhage. However, the impact of alternative splicing of FN on extracellular matrix composition remains unknown. Approach and Results: Here, we perform quantitative proteomic analysis of the matrisome of murine carotid arteries in mice deficient in the production of FN splice isoforms containing alternative exons EIIIA and EIIIB (FN-EIIIAB null) after exposure to low and disturbed flow in vivo. We also examine serum-derived and endothelial-cell contributions to the matrisome in a simplified in vitro system. We found flow-induced differences in the carotid artery matrisome that were impaired in FN-EIIIAB null mice. One of the most interesting differences was reduced recruitment of FBLN1 (fibulin-1), abundant in blood and not locally produced in the intima. This defect was validated in our in vitro assay, where FBLN1 recruitment from serum was impaired by the absence of these alternatively spliced segments. CONCLUSIONS: Our results reveal the extent of the dynamic alterations in the matrisome in the acute response to low and disturbed flow and show how changes in the splicing of FN, a common response in vascular inflammation and remodeling, can affect matrix composition.


Subject(s)
Alternative Splicing , Carotid Arteries/metabolism , Carotid Stenosis/metabolism , Extracellular Matrix/metabolism , Fibronectins/metabolism , Vascular Remodeling , Animals , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Carotid Stenosis/pathology , Carotid Stenosis/physiopathology , Cells, Cultured , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Extracellular Matrix/pathology , Fibronectins/deficiency , Fibronectins/genetics , Mechanotransduction, Cellular , Mice, Knockout , Protein Isoforms , Regional Blood Flow , Stress, Mechanical
4.
Nat Commun ; 11(1): 4837, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973183

ABSTRACT

ATP synthesis and thermogenesis are two critical outputs of mitochondrial respiration. How these outputs are regulated to balance the cellular requirement for energy and heat is largely unknown. Here we show that major facilitator superfamily domain containing 7C (MFSD7C) uncouples mitochondrial respiration to switch ATP synthesis to thermogenesis in response to heme. When heme levels are low, MSFD7C promotes ATP synthesis by interacting with components of the electron transport chain (ETC) complexes III, IV, and V, and destabilizing sarcoendoplasmic reticulum Ca2+-ATPase 2b (SERCA2b). Upon heme binding to the N-terminal domain, MFSD7C dissociates from ETC components and SERCA2b, resulting in SERCA2b stabilization and thermogenesis. The heme-regulated switch between ATP synthesis and thermogenesis enables cells to match outputs of mitochondrial respiration to their metabolic state and nutrient supply, and represents a cell intrinsic mechanism to regulate mitochondrial energy metabolism.


Subject(s)
Adenosine Triphosphate/metabolism , Heme/metabolism , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Receptors, Virus/metabolism , Thermogenesis/physiology , Animals , Cytochrome-c Oxidase Deficiency , Electron Transport Complex III , Electron Transport Complex IV , Energy Metabolism/physiology , Gene Knockout Techniques , HEK293 Cells , Humans , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Membranes/metabolism , Protein Domains , Receptors, Virus/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction , THP-1 Cells
5.
Cell Chem Biol ; 27(12): 1500-1509.e13, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32888499

ABSTRACT

The interleukin-1 receptor-activated kinase 4 (IRAK4) belongs to the IRAK family of serine/threonine kinases and plays a central role in the innate immune response. However, the function of IRAK4 in tumor growth and progression remains elusive. Here we sought to determine the enzymatic and scaffolding functions of IRAK4 in activated B-cell-like diffuse large B cell lymphoma (ABC DLBCL). We chose a highly selective IRAK4 kinase inhibitor to probe the biological effects of kinase inhibition and developed a series of IRAK4 degraders to evaluate the effects of protein degradation in ABC DLBCL cells. Interestingly, the results demonstrated that neither IRAK4 kinase inhibition nor protein degradation led to cell death or growth inhibition, suggesting a redundant role for IRAK4 in ABC DLBCL cell survival. IRAK4 degraders characterized in this study provide useful tools for understanding IRAK4 protein scaffolding function, which was previously unachievable using pharmacological perturbation.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Protein Kinase Inhibitors/pharmacology , Proteolysis/drug effects , Cell Line, Tumor , Drug Design , Humans
6.
Nat Chem Biol ; 15(7): 756, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31076737

ABSTRACT

In the version of the article originally published, two sets of labels on the x axis of the graph in Fig. 5b were in reverse order. In the 'PurF' row, the locations of 'N48A' and 'R45A' should be switched, and in the row below those of '4.1' and the minus sign should be switched. Shown below are the original and corrected versions of Fig. 5b. The error has been corrected in the HTML and PDF versions of the article.

7.
Methods Mol Biol ; 1944: 95-114, 2019.
Article in English | MEDLINE | ID: mdl-30840237

ABSTRACT

We present the development, optimization, and application of constructs, cell lines, covalent cross-linking methods, and immunoprecipitation strategies that enable robust and accurate determination of collagen interactomes via mass spectrometry-based proteomics. Using collagen type-I as an example, protocols for working with large, repetitive, and GC-rich collagen genes are described, followed by strategies for engineering cells that stably and inducibly express antibody epitope-tagged collagen-I. Detailed steps to optimize collagen interactome cross-linking and perform immunoprecipitations are then presented. We conclude with a discussion of methods to elute collagen interactomes and prepare samples for mass spectrometry-mediated identification of interactors. Throughout, caveats and potential problems researchers may encounter when working with collagen are discussed. We note that the protocols presented herein may be readily adapted to define interactomes of other collagen types, as well as to determine comparative interactomes of normal and disease-causing collagen variants using quantitative isotopic labeling (SILAC)- or isobaric mass tags (iTRAQ or TMT)-based mass spectrometry analysis.


Subject(s)
Collagen/metabolism , Intracellular Space/metabolism , Isotope Labeling/methods , Mass Spectrometry/methods , Protein Interaction Mapping/methods , Proteomics/methods , Collagen/analysis , Humans , Immunoprecipitation
8.
Elife ; 82019 01 24.
Article in English | MEDLINE | ID: mdl-30676316

ABSTRACT

The zinc finger CCCTC-binding protein (CTCF) carries out many functions in the cell. Although previous studies sought to explain CTCF multivalency based on sequence composition of binding sites, few examined how CTCF post-translational modification (PTM) could contribute to function. Here, we performed CTCF mass spectrometry, identified a novel phosphorylation site at Serine 224 (Ser224-P), and demonstrate that phosphorylation is carried out by Polo-like kinase 1 (PLK1). CTCF Ser224-P is chromatin-associated, mapping to at least a subset of known CTCF sites. CTCF Ser224-P accumulates during the G2/M transition of the cell cycle and is enriched at pericentric regions. The phospho-obviation mutant, S224A, appeared normal. However, the phospho-mimic mutant, S224E, is detrimental to mouse embryonic stem cell colonies. While ploidy and chromatin architecture appear unaffected, S224E mutants differentially express hundreds of genes, including p53 and p21. We have thus identified a new CTCF PTM and provided evidence of biological function.


Subject(s)
CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/metabolism , G2 Phase , Mitosis , Phosphoserine/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , CCCTC-Binding Factor/chemistry , Casein Kinase II/metabolism , Cell Proliferation , Chromatin , Conserved Sequence , DNA/metabolism , DNA Mutational Analysis , Humans , Interphase , Membrane Proteins/metabolism , Mice , Mutation/genetics , Phosphorylation , Ploidies , Protein Binding , RNA/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Up-Regulation , Polo-Like Kinase 1
9.
Nat Chem Biol ; 15(2): 141-150, 2019 02.
Article in English | MEDLINE | ID: mdl-30559427

ABSTRACT

The nucleotide ppGpp is a highly conserved regulatory molecule in bacteria that helps tune growth rate to nutrient availability. Despite decades of study, how ppGpp regulates growth remains poorly understood. Here, we developed and validated a capture-compound mass spectrometry approach that identified >50 putative ppGpp targets in Escherichia coli. These targets control many key cellular processes and include 13 enzymes required for nucleotide synthesis. We demonstrated that ppGpp inhibits the de novo synthesis of all purine nucleotides by directly targeting the enzyme PurF. By solving a structure of PurF bound to ppGpp, we designed a mutation that ablates ppGpp-based regulation, leading to dysregulation of purine-nucleotide synthesis following ppGpp accumulation. Collectively, our results provide new insights into ppGpp-based growth control and a nearly comprehensive set of targets for future exploration. The capture compounds developed should also enable the rapid identification of ppGpp targets in any species, including pathogens.


Subject(s)
Escherichia coli/growth & development , Guanosine Pentaphosphate/biosynthesis , Guanosine Pentaphosphate/physiology , Amidophosphoribosyltransferase/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Guanine Nucleotides/biosynthesis , Guanine Nucleotides/physiology , Guanosine Tetraphosphate , Purines/antagonists & inhibitors , Purines/biosynthesis
10.
Cancer Res ; 78(4): 985-1002, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29279356

ABSTRACT

Activating mutations in KRAS are the hallmark genetic alterations in pancreatic ductal adenocarcinoma (PDAC) and the key drivers of its initiation and progression. Longstanding efforts to develop novel KRAS inhibitors have been based on the assumption that PDAC cells are addicted to activated KRAS, but this assumption remains controversial. In this study, we analyzed the requirement of endogenous Kras to maintain survival of murine PDAC cells, using an inducible shRNA-based system that enables temporal control of Kras expression. We found that the majority of murine PDAC cells analyzed tolerated acute and sustained Kras silencing by adapting to a reversible cell state characterized by differences in cell morphology, proliferative kinetics, and tumor-initiating capacity. While we observed no significant mutational or transcriptional changes in the Kras-inhibited state, global phosphoproteomic profiling revealed significant alterations in cell signaling, including increased phosphorylation of focal adhesion pathway components. Accordingly, Kras-inhibited cells displayed prominent focal adhesion plaque structures, enhanced adherence properties, and increased dependency on adhesion for viability in vitro Overall, our results call into question the degree to which PDAC cells are addicted to activated KRAS, by illustrating adaptive nongenetic and nontranscriptional mechanisms of resistance to Kras blockade. However, by identifying these mechanisms, our work also provides mechanistic directions to develop combination strategies that can help enforce the efficacy of KRAS inhibitors.Significance: These results call into question the degree to which pancreatic cancers are addicted to KRAS by illustrating adaptive nongenetic and nontranscriptional mechanisms of resistance to Kras blockade, with implications for the development of KRAS inhibitors for PDAC treatment. Cancer Res; 78(4); 985-1002. ©2017 AACR.


Subject(s)
Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/biosynthesis , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Pancreatic Neoplasms
11.
Dev Cell ; 43(3): 359-371.e6, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29107559

ABSTRACT

X-chromosome inactivation (XCI) silences one X chromosome in the female mammal and is essential to peri-implantation development. XCI is thought to be cell autonomous, with all factors required being produced within each cell. Nevertheless, external cues may exist. Here, we search for such developmental signals by combining bioinformatic, biochemical, and genetic approaches. Using ex vivo and in vivo models, we identify the Hedgehog (HH) paracrine system as a candidate signaling cascade. HH signaling keeps XCI in check in pluripotent cells and is transduced by GLI transcription factors to binding sites in Tsix, the antisense repressor of XCI. GLI potentiates Tsix expression and impedes XCI. In vivo, mutating Indian Hedgehog results in a sex ratio bias against females, and the female lethality is rescued by a second-site mutation in Tsix. These data demonstrate a genetic and functional intersection between HH and XCI and support a role for intercellular signaling during XCI.


Subject(s)
Hedgehog Proteins/metabolism , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/genetics , X Chromosome Inactivation/genetics , Animals , Cell Differentiation/physiology , Female , Mice, Knockout , Transcription Factors/metabolism , Transcription, Genetic/genetics
12.
J Proteome Res ; 16(8): 3083-3091, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28675934

ABSTRACT

The extracellular matrix (ECM) is a complex meshwork of insoluble fibrillar proteins and signaling factors interacting together to provide architectural and instructional cues to the surrounding cells. Alterations in ECM organization or composition and excessive ECM deposition have been observed in diseases such as fibrosis, cardiovascular diseases, and cancer. We provide here optimized protocols to solubilize ECM proteins from normal or tumor tissues, digest the proteins into peptides, analyze ECM peptides by mass spectrometry, and interpret the mass spectrometric data. In addition, we present here two novel R-script-based web tools allowing rapid annotation and relative quantification of ECM proteins, peptides, and intensity/abundance in mass spectrometric data output files. We illustrate this protocol with ECMs obtained from two pairs of tissues, which differ in ECM content and cellularity: triple-negative breast cancer and adjacent mammary tissue, and omental metastasis from high-grade serous ovarian cancer and normal omentum. The complete proteomics data set generated in this study has been deposited to the public repository ProteomeXchange with the data set identifier: PXD005554.


Subject(s)
Extracellular Matrix/chemistry , Ovarian Neoplasms/chemistry , Proteomics/methods , Triple Negative Breast Neoplasms/chemistry , Breast/cytology , Extracellular Matrix/pathology , Extracellular Matrix Proteins/analysis , Female , Humans , Mass Spectrometry , Molecular Sequence Annotation , Omentum/cytology , Ovarian Neoplasms/secondary , Ovarian Neoplasms/ultrastructure , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/ultrastructure
13.
Proc Natl Acad Sci U S A ; 114(28): E5625-E5634, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28652369

ABSTRACT

The extracellular microenvironment is an integral component of normal and diseased tissues that is poorly understood owing to its complexity. To investigate the contribution of the microenvironment to lung fibrosis and adenocarcinoma progression, two pathologies characterized by excessive stromal expansion, we used mouse models to characterize the extracellular matrix (ECM) composition of normal lung, fibrotic lung, lung tumors, and metastases. Using quantitative proteomics, we identified and assayed the abundance of 113 ECM proteins, which revealed robust ECM protein signatures unique to fibrosis, primary tumors, or metastases. These analyses indicated significantly increased abundance of several S100 proteins, including Fibronectin and Tenascin-C (Tnc), in primary lung tumors and associated lymph node metastases compared with normal tissue. We further showed that Tnc expression is repressed by the transcription factor Nkx2-1, a well-established suppressor of metastatic progression. We found that increasing the levels of Tnc, via CRISPR-mediated transcriptional activation of the endogenous gene, enhanced the metastatic dissemination of lung adenocarcinoma cells. Interrogation of human cancer gene expression data revealed that high TNC expression correlates with worse prognosis for lung adenocarcinoma, and that a three-gene expression signature comprising TNC, S100A10, and S100A11 is a robust predictor of patient survival independent of age, sex, smoking history, and mutational load. Our findings suggest that the poorly understood ECM composition of the fibrotic and tumor microenvironment is an underexplored source of diagnostic markers and potential therapeutic targets for cancer patients.


Subject(s)
Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Proteomics/methods , Tenascin/physiology , Adenocarcinoma/metabolism , Animals , Annexin A2/metabolism , CRISPR-Cas Systems , Disease Progression , Extracellular Matrix/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Male , Mice , Mice, Inbred C57BL , Multivariate Analysis , Neoplasm Metastasis , Prognosis , S100 Proteins/metabolism , Thyroid Nuclear Factor 1/metabolism , Treatment Outcome , Tumor Microenvironment
14.
Biomaterials ; 128: 147-159, 2017 06.
Article in English | MEDLINE | ID: mdl-28327460

ABSTRACT

In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering.


Subject(s)
Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Proteomics/methods , Bone Marrow/metabolism , Cell Proliferation , Cell Survival , Extracellular Matrix/ultrastructure , Humans , Infant, Newborn , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/ultrastructure , Tissue Donors , Transcriptome/genetics
15.
Nat Med ; 23(2): 235-241, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28024083

ABSTRACT

Mammalian tissues rely on a variety of nutrients to support their physiological functions. It is known that altered metabolism is involved in the pathogenesis of cancer, but which nutrients support the inappropriate growth of intact malignant tumors is incompletely understood. Amino acids are essential nutrients for many cancer cells that can be obtained through the scavenging and catabolism of extracellular protein via macropinocytosis. In particular, macropinocytosis can be a nutrient source for pancreatic cancer cells, but it is not fully understood how the tumor environment influences metabolic phenotypes and whether macropinocytosis supports the maintenance of amino acid levels within pancreatic tumors. Here we utilize miniaturized plasma exchange to deliver labeled albumin to tissues in live mice, and we demonstrate that breakdown of albumin contributes to the supply of free amino acids in pancreatic tumors. We also deliver albumin directly into tumors using an implantable microdevice, which was adapted and modified from ref. 9. Following implantation, we directly observe protein catabolism and macropinocytosis in situ by pancreatic cancer cells, but not by adjacent, non-cancerous pancreatic tissue. In addition, we find that intratumoral inhibition of macropinocytosis decreases amino acid levels. Taken together, these data suggest that pancreatic cancer cells consume extracellular protein, including albumin, and that this consumption serves as an important source of amino acids for pancreatic cancer cells in vivo.


Subject(s)
Amino Acids/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Pinocytosis , Proteolysis , Serum Albumin/metabolism , Albumins/metabolism , Animals , Cell Line, Tumor , Chromatography, Gas , Disease Models, Animal , Extracellular Space/metabolism , Mice , Microscopy, Fluorescence, Multiphoton , Nitrogen Isotopes , Plasmapheresis , Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Mol Biol Cell ; 26(21): 3867-78, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26337385

ABSTRACT

During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes.


Subject(s)
Microfilament Proteins/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Actins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion/physiology , Cell Movement/drug effects , Cytoskeletal Proteins , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Female , Humans , Neoplasm Metastasis , Phosphorylation , Protein Isoforms , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects
17.
Proteomics ; 15(9): 1470-5, 2015 May.
Article in English | MEDLINE | ID: mdl-25641834

ABSTRACT

MS-based analysis of the acetylproteome has highlighted a role for acetylation in a wide array of biological processes including gene regulation, metabolism, and cellular signaling. To date, anti-acetyllysine antibodies have been used as the predominant affinity reagent for enrichment of acetyllysine-containing peptides and proteins; however, these reagents suffer from high nonspecific binding and lot-to-lot variability. Bromodomains represent potential affinity reagents for acetylated proteins and peptides, given their natural role in recognition of acetylated sequence motifs in vivo. To evaluate their efficacy, we generated recombinant proteins representing all known yeast bromodomains. Bromodomain specificity for acetylated peptides was determined using degenerate peptide arrays, leading to the observation that different bromodomains display a wide array of binding specificities. Despite their relatively weak affinity, we demonstrate the ability of selected bromodomains to enrich acetylated peptides from a complex biological mixture prior to mass spectrometric analysis. Finally, we demonstrate a method for improving the utility of bromodomain enrichment for MS through engineering novel affinity reagents using combinatorial tandem bromodomain pairs.


Subject(s)
DNA-Binding Proteins/genetics , Histones/chemistry , Lysine/analysis , Peptides/chemistry , Protein Engineering , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Acetylation , Amino Acid Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Histones/metabolism , Humans , Lysine/metabolism , Molecular Sequence Data , Peptides/metabolism , Protein Processing, Post-Translational , Protein Structure, Tertiary , Proteomics/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Tandem Mass Spectrometry/methods , Transcription Factors/chemistry , Transcription Factors/metabolism
18.
Cell ; 159(4): 869-83, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417162

ABSTRACT

X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function.


Subject(s)
DNA Helicases/metabolism , Nuclear Proteins/metabolism , Polycomb Repressive Complex 2/metabolism , RNA, Long Noncoding/metabolism , X Chromosome Inactivation , Animals , DNA Helicases/isolation & purification , Embryonic Stem Cells/metabolism , Female , Male , Mice , Nuclear Proteins/isolation & purification , X-linked Nuclear Protein
19.
Development ; 141(18): 3495-504, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25142464

ABSTRACT

Sirtuins are NAD(+)-dependent deacylases that regulate numerous biological processes in response to the environment. SirT1 is the mammalian ortholog of yeast Sir2, and is involved in many metabolic pathways in somatic tissues. Whole body deletion of SirT1 alters reproductive function in oocytes and the testes, in part caused by defects in central neuro-endocrine control. To study the function of SirT1 specifically in the male germ line, we deleted this sirtuin in male germ cells and found that mutant mice had smaller testes, a delay in differentiation of pre-meiotic germ cells, decreased spermatozoa number, an increased proportion of abnormal spermatozoa and reduced fertility. At the molecular level, mutants do not have the characteristic increase in acetylation of histone H4 at residues K5, K8 and K12 during spermiogenesis and demonstrate corresponding defects in the histone to protamine transition. Our findings thus reveal a germ cell-autonomous role of SirT1 in spermatogenesis.


Subject(s)
Cell Differentiation/genetics , Fertility/genetics , Germ Cells/physiology , Sirtuin 1/metabolism , Spermatogenesis/genetics , Acetylation , Animals , Cell Differentiation/physiology , Chromatin Assembly and Disassembly/genetics , Chromatography, Liquid , Female , Fertility/physiology , Fluorescent Antibody Technique , Histones/metabolism , Immunoblotting , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational/genetics , Sirtuin 1/deficiency , Tandem Mass Spectrometry , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...