Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Biomaterials ; 311: 122693, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38996672

ABSTRACT

Cancer vaccines aim at generating cytotoxic CD8+ T cells that kill cancer cells and confer durable tumor regression. Hereto, CD8+ peptide epitopes should be presented by antigen presenting cells to CD8+ T cells in lymphoid tissue. Unfortunately, in unformulated soluble form, peptide antigens are poorly taken up by antigen presenting cells and do not efficiently reach lymph nodes. Hence, the lack of efficient delivery remains a major limitation for successful clinical translation of cancer vaccination using peptide antigens. Here we propose a generic peptide nanoformulation strategy by extending the amino acid sequence of the peptide antigen epitope with 10 glutamic acid residues. The resulting overall anionic charge of the peptide allows encapsulation into lipid nanoparticles (peptide-LNP) by electrostatic interaction with an ionizable cationic lipid. We demonstrate that intravenous injection of peptide-LNP efficiently delivers the peptide to immune cells in the spleen. Peptide-LNP that co-encapsulate an imidazoquinoline TLR7/8 agonist (IMDQ) induce robust innate immune activation in a broad range of immune cell subsets in the spleen. Peptide-LNP containing the minimal CD8+ T cell epitope of the HPV type 16 E7 oncoprotein and IMDQ induces high levels of antigen-specific CD8+ T cells in the blood, and can confer protective immunity against E7-expressing tumors in both prophylactic and therapeutic settings.


Subject(s)
Mice, Inbred C57BL , Nanoparticles , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Animals , Nanoparticles/chemistry , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Lipids/chemistry , Peptides/chemistry , Female , Papillomavirus E7 Proteins/immunology , Quinolines/pharmacology , Quinolines/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology
2.
Elife ; 122024 Jan 09.
Article in English | MEDLINE | ID: mdl-38194250

ABSTRACT

Spontaneous protein crystallization is a rare event, yet protein crystals are frequently found in eosinophil-rich inflammation. In humans, Charcot-Leyden crystals (CLCs) are made from galectin-10 (Gal10) protein, an abundant protein in eosinophils. Although mice do not encode Gal10 in their genome, they do form pseudo-CLCs, made from the chitinase-like proteins Ym1 and/or Ym2, encoded by Chil3 and Chil4 and made by myeloid and epithelial cells respectively. Here, we investigated the biological effects of pseudo-CLCs since their function is currently unknown. We produced recombinant Ym1 crystals which were shown to have identical crystal packing and structure by X-ray crystallography as in vivo native crystals derived from murine lung. When administered to the airways of mice, crystalline but not soluble Ym1 stimulated innate and adaptive immunity and acted as a type 2 immune adjuvant for eosinophilic inflammation via triggering of dendritic cells (DCs). Murine Ym1 protein crystals found at sites of eosinophilic inflammation reinforce type 2 immunity and could serve as a surrogate model for studying the biology of human CLCs.


Subject(s)
Adaptive Immunity , Chitinases , Animals , Humans , Mice , Adjuvants, Immunologic , Crystallization , Inflammation
3.
Adv Healthc Mater ; 12(32): e2301687, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37772637

ABSTRACT

Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG-ODNs) are short single-stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9-dependent NF-κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG-ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP-formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP-formulated CpG, admixed with a protein antigen, induces higher antigen-specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG.


Subject(s)
Toll-Like Receptor 9 , Vaccines , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Immunity, Innate , Lymphoid Tissue , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/chemistry
4.
J Exp Med ; 220(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37347461

ABSTRACT

Healthy adipose tissue (AT) contains ST2+ Tregs, ILC2s, and alternatively activated macrophages that are lost in mice or humans on high caloric diet. Understanding how this form of type 2 immunity is regulated could improve treatment of obesity. The STE20 kinase Thousand And One amino acid Kinase-3 (TAOK3) has been linked to obesity in mice and humans, but its precise function is unknown. We found that ST2+ Tregs are upregulated in visceral epididymal white AT (eWAT) of Taok3-/- mice, dependent on IL-33 and the kinase activity of TAOK3. Upon high fat diet feeding, metabolic dysfunction was attenuated in Taok3-/- mice. ST2+ Tregs disappeared from eWAT in obese wild-type mice, but this was not the case in Taok3-/- mice. Mechanistically, AT Taok3-/- Tregs were intrinsically more responsive to IL-33, through higher expression of ST2, and expressed more PPARγ and type 2 cytokines. Thus, TAOK3 inhibits adipose tissue Tregs and regulates immunometabolism under excessive caloric intake.


Subject(s)
Immunity, Innate , Interleukin-33 , Animals , Humans , Mice , Diet, High-Fat/adverse effects , Interleukin-1 Receptor-Like 1 Protein , Lymphocytes/metabolism , Mice, Inbred C57BL , Obesity/metabolism
5.
Sci Immunol ; 8(83): eadd3955, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37172103

ABSTRACT

Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.


Subject(s)
Dendritic Cells , Signal Transduction , Liver X Receptors/metabolism , Signal Transduction/genetics , Homeostasis , Cholesterol
6.
J Allergy Clin Immunol ; 149(4): 1413-1427.e2, 2022 04.
Article in English | MEDLINE | ID: mdl-34506849

ABSTRACT

BACKGROUND: The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific TH2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed. OBJECTIVE: We examined if and how loss of Taok3 affects the development of house dust mite (HDM)-driven allergic asthma in an in vivo mouse model. METHODS: Wild-type Taok3+/+ and gene-deficient Taok3-/- mice were sensitized and challenged with HDM, and bronchoalveolar lavage fluid composition, mediastinal lymph node cytokine production, lung histology, and bronchial hyperreactivity measured. Conditional Taok3fl/fl mice were crossed to tissue- and cell-specific specific deletor Cre mice to understand how Taok3 acted on asthma susceptibility. Kinase-dead (KD) Taok3KD mice were generated to probe for the druggability of this pathway. Activation of HDM-specific T cells was measured in adoptively transferred HDM-specific T-cell receptor-transgenic CD4+ T cells. ILC2 biology was assessed by in vivo and in vitro IL-33 stimulation assays in Taok3-/- and Taok3+/+, Taok3KD, and Red5-Cre Taok3fl/fl mice. RESULTS: Taok3-/- mice failed to mount salient features of asthma, including airway eosinophilia, TH2 cytokine production, IgE secretion, airway goblet cell metaplasia, and bronchial hyperreactivity compared to controls. This was due to intrinsic loss of Taok3 in hematopoietic and not epithelial cells. Loss of Taok3 resulted in hampered HDM-induced lung DC migration to the draining lymph nodes and defective priming of HDM-specific TH2 cells. Strikingly, HDM and IL-33-induced ILC2 proliferation and function were also severely affected in Taok3-deficient and Taok3KD mice. CONCLUSIONS: Absence of Taok3 or loss of its kinase activity protects from HDM-driven allergic asthma as a result of defects in both adaptive DC-mediated TH2 activation and innate ILC2 function. This identifies Taok3 as an interesting drug target, justifying further testing as a new treatment for type 2-high asthma.


Subject(s)
Asthma , Bronchial Hyperreactivity , Allergens , Animals , Bronchial Hyperreactivity/pathology , Cytokines , Dermatophagoides pteronyssinus , Disease Models, Animal , Humans , Immunity, Innate , Interleukin-33 , Lung , Lymphocytes , Mice , Protein Serine-Threonine Kinases , Pyroglyphidae , Th2 Cells
9.
J Am Chem Soc ; 143(26): 9872-9883, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34166595

ABSTRACT

Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.


Subject(s)
Adjuvants, Immunologic/chemistry , Esters/chemistry , Nanogels/chemistry , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Animals , Drug Carriers/chemistry , Drug Liberation , Humans , Hydrogen-Ion Concentration , Immunotherapy , Mice, Inbred BALB C , Micelles , Optical Imaging , Polymerization , Polymers/chemistry
10.
ACS Appl Mater Interfaces ; 13(5): 6011-6022, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33507728

ABSTRACT

Peptide-based subunit vaccines are attractive in view of personalized cancer vaccination with neo-antigens, as well as for the design of the newest generation of vaccines against infectious diseases. Key to mounting robust antigen-specific immunity is delivery of antigen to antigen-presenting (innate immune) cells in lymphoid tissue with concomitant innate immune activation to promote antigen presentation to T cells and to shape the amplitude and nature of the immune response. Nanoparticles that co-deliver both peptide antigen and molecular adjuvants are well suited for this task. However, in the context of peptide-based antigen, an unmet need exists for a generic strategy that allows for co-encapsulation of peptide and molecular adjuvants due to the stark variation in physicochemical properties based on the amino acid sequence of the peptide. These properties also strongly differ from those of many molecular adjuvants. Here, we devise a lipid nanoparticle (LNP) platform that addresses these issues. Key in our concept is poly(l-glutamic acid) (PGA), which serves as a hydrophilic backbone for conjugation of, respectively, peptide antigen (Ag) and an imidazoquinoline (IMDQ) TLR7/8 agonist as a molecular adjuvant. Making use of the PGA's polyanionic nature, we condensate PGA-Ag and PGA-IMDQ into LNP by electrostatic interaction with an ionizable lipid. We show in vitro and in vivo in mouse models that LNP encapsulation favors uptake by innate immune cells in lymphoid tissue and promotes the induction of Ag-specific T cells responses both after subcutaneous and intravenous administration.


Subject(s)
Lipids/immunology , Lymphocytes/immunology , Nanoparticles/chemistry , Polyglutamic Acid/immunology , Vaccines/immunology , Adjuvants, Immunologic/chemistry , Animals , Cell Line , Lipids/chemistry , Mice , Mice, Inbred BALB C , Molecular Structure , Particle Size , Polyglutamic Acid/chemical synthesis , Polyglutamic Acid/chemistry , RAW 264.7 Cells , Surface Properties , Vaccines/chemistry
11.
Angew Chem Int Ed Engl ; 60(17): 9467-9473, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33464672

ABSTRACT

The search for vaccines that protect from severe morbidity and mortality because of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19) is a race against the clock and the virus. Here we describe an amphiphilic imidazoquinoline (IMDQ-PEG-CHOL) TLR7/8 adjuvant, consisting of an imidazoquinoline conjugated to the chain end of a cholesterol-poly(ethylene glycol) macromolecular amphiphile. It is water-soluble and exhibits massive translocation to lymph nodes upon local administration through binding to albumin, affording localized innate immune activation and reduction in systemic inflammation. The adjuvanticity of IMDQ-PEG-CHOL was validated in a licensed vaccine setting (quadrivalent influenza vaccine) and an experimental trimeric recombinant SARS-CoV-2 spike protein vaccine, showing robust IgG2a and IgG1 antibody titers in mice that could neutralize viral infection in vitro and in vivo in a mouse model.


Subject(s)
Adjuvants, Immunologic/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Imidazoles/therapeutic use , Immunity, Innate/drug effects , Quinolines/therapeutic use , Animals , COVID-19 Vaccines/immunology , Cholesterol/analogs & derivatives , Cholesterol/immunology , Cholesterol/therapeutic use , Female , Humans , Imidazoles/immunology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Membrane Glycoproteins/agonists , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Polyethylene Glycols/therapeutic use , Quinolines/immunology , Recombinant Proteins/immunology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Surface-Active Agents/therapeutic use , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists
12.
Proc Natl Acad Sci U S A ; 117(49): 31331-31342, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33214146

ABSTRACT

Antigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM+ CD4+ cDC2s in the spleen and failed to prime CD4+ T cells in response to allogeneic red-blood-cell transfusion. These NOTCH2- and ADAM10-dependent cDC2s were absent selectively in the spleen, but not in the intestine of Taok3-/- and CD11c-cre Taok3fl/fl mice. The loss of splenic ESAM+ cDC2s was cell-intrinsic and could be rescued by conditional overexpression of the constitutively active NOTCH intracellular domain in CD11c-expressing cells. Therefore, TAOK3 controls the terminal differentiation of NOTCH2-dependent splenic cDC2s.


Subject(s)
Cell Differentiation , Dendritic Cells/cytology , Dendritic Cells/enzymology , Protein Kinases/metabolism , Receptor, Notch2/metabolism , Spleen/cytology , Animals , Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation , Intestine, Small/metabolism , Mice, Inbred C57BL , Phenotype , Protein Domains , Protein Kinases/deficiency , Receptor, Notch2/chemistry , Signal Transduction
13.
bioRxiv ; 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33106810

ABSTRACT

The search for vaccines that protect from severe morbidity and mortality as a result of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19) is a race against the clock and the virus. Several vaccine candidates are currently being tested in the clinic. Inactivated virus and recombinant protein vaccines can be safe options but may require adjuvants to induce robust immune responses efficiently. In this work we describe the use of a novel amphiphilic imidazoquinoline (IMDQ-PEG-CHOL) TLR7/8 adjuvant, consisting of an imidazoquinoline conjugated to the chain end of a cholesterol-poly(ethylene glycol) macromolecular amphiphile). This amphiphile is water soluble and exhibits massive translocation to lymph nodes upon local administration, likely through binding to albumin. IMDQ-PEG-CHOL is used to induce a protective immune response against SARS-CoV-2 after single vaccination with trimeric recombinant SARS-CoV-2 spike protein in the BALB/c mouse model. Inclusion of amphiphilic IMDQ-PEG-CHOL in the SARS-CoV-2 spike vaccine formulation resulted in enhanced immune cell recruitment and activation in the draining lymph node. IMDQ-PEG-CHOL has a better safety profile compared to native soluble IMDQ as the former induces a more localized immune response upon local injection, preventing systemic inflammation. Moreover, IMDQ-PEG-CHOL adjuvanted vaccine induced enhanced ELISA and in vitro microneutralization titers, and a more balanced IgG2a/IgG1 response. To correlate vaccine responses with control of virus replication in vivo, vaccinated mice were challenged with SARS-CoV-2 virus after being sensitized by intranasal adenovirus-mediated expression of the human angiotensin converting enzyme 2 (ACE2) gene. Animals vaccinated with trimeric recombinant spike protein vaccine without adjuvant had lung virus titers comparable to non-vaccinated control mice, whereas animals vaccinated with IMDQ-PEG-CHOL-adjuvanted vaccine controlled viral replication and infectious viruses could not be recovered from their lungs at day 4 post infection. In order to test whether IMDQ-PEG-CHOL could also be used to adjuvant vaccines currently licensed for use in humans, proof of concept was also provided by using the same IMDQ-PEG-CHOL to adjuvant human quadrivalent inactivated influenza virus split vaccine, which resulted in enhanced hemagglutination inhibition titers and a more balanced IgG2a/IgG1 antibody response. Enhanced influenza vaccine responses correlated with better virus control when mice were given a lethal influenza virus challenge. Our results underscore the potential use of IMDQ-PEG-CHOL as an adjuvant to achieve protection after single immunization with recombinant protein and inactivated virus vaccines against respiratory viruses, such as SARS-CoV-2 and influenza viruses.

14.
J Am Chem Soc ; 142(28): 12133-12139, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32524819

ABSTRACT

Synthetic immune-stimulatory drugs such as agonists of the Toll-like receptors (TLR) 7/8 are potent activators of antigen-presenting cells (APCs), however, they also induce severe side effects due to leakage from the site of injection into systemic circulation. Here, we report on the design and synthesis of an amphiphilic polymer-prodrug conjugate of an imidazoquinoline TLR7/8 agonist that in aqueous medium forms vesicular structures of 200 nm. The conjugate contains an endosomal enzyme-responsive linker enabling degradation of the vesicles and release of the TLR7/8 agonist in native form after endocytosis, which results in high in vitro TLR agonist activity. In a mouse model, locally administered vesicles provoke significantly more potent and long-lasting immune stimulation in terms of interferon expression at the injection site and in draining lymphoid tissue compared to a nonamphiphilic control and the native TLR agonist. Moreover, the vesicles induce robust activation of dendritic cells in the draining lymph node in vivo.


Subject(s)
Imidazoles/pharmacology , Membrane Glycoproteins/agonists , Prodrugs/pharmacology , Quinolines/pharmacology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , beta-Galactosidase/immunology , Animals , Imidazoles/chemistry , Imidazoles/metabolism , Immunity, Innate/drug effects , Immunity, Innate/immunology , Membrane Glycoproteins/immunology , Mice , Molecular Structure , Particle Size , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Polyethylene Glycols/pharmacology , Prodrugs/chemistry , Prodrugs/metabolism , Quinolines/chemistry , Quinolines/metabolism , Surface Properties , Toll-Like Receptor 7/immunology , Toll-Like Receptor 8/immunology , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism
15.
Angew Chem Int Ed Engl ; 58(43): 15390-15395, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31397948

ABSTRACT

Uncontrolled systemic inflammatory immune triggering has hampered the clinical translation of several classes of small-molecule immunomodulators, such as imidazoquinoline TLR7/8 agonists for vaccine design and cancer immunotherapy. By taking advantage of the inherent serum-protein-binding property of lipid motifs and their tendency to accumulate in lymphoid tissue, we designed amphiphilic lipid-polymer conjugates that suppress systemic inflammation but provoke potent lymph-node immune activation. This work provides a rational basis for the design of lipid-polymer amphiphiles for optimized lymphoid targeting.


Subject(s)
Immunity, Innate , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Animals , Cholesterol/chemistry , Imidazoles/chemistry , Immunity, Innate/drug effects , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Lipids/chemistry , Lymph Nodes/drug effects , Lymph Nodes/immunology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Polymers/chemistry , Quinolines/chemistry , Quinolines/pharmacology , RAW 264.7 Cells , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism
16.
Chem Commun (Camb) ; 55(73): 10952-10955, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31441915

ABSTRACT

Triggering antibody-mediated innate immune mechanisms to kill cancer cells is an attractive therapeutic avenue. In this context, recruitment of endogenous antibodies to the cancer cell surface could be a viable alternative to the use of monoclonal antibodies. We report on antibody-recruiting polymers containing multiple antibody-binding hapten motifs and cyclooctynes that can covalently conjugate to azides introduced onto the glycocalyx of cancer cells by metabolic labeling with azido sugars.


Subject(s)
Acrylic Resins/chemistry , Antibodies/immunology , Azides/metabolism , Dinitrobenzenes/immunology , Hexosamines/metabolism , Acrylic Resins/chemical synthesis , Animals , Azides/chemistry , Cell Line, Tumor , Click Chemistry , Cycloaddition Reaction , Cyclooctanes/chemical synthesis , Cyclooctanes/chemistry , Dinitrobenzenes/chemical synthesis , Dinitrobenzenes/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Glycocalyx/metabolism , Hexosamines/chemistry , Humans , Mice , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Proof of Concept Study , Spheroids, Cellular/metabolism
17.
J Allergy Clin Immunol ; 144(6): 1648-1659.e9, 2019 12.
Article in English | MEDLINE | ID: mdl-31330218

ABSTRACT

BACKGROUND: Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE: We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS: Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS: HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION: ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.


Subject(s)
Asthma/immunology , Ceramides/immunology , Lipid Metabolism/immunology , Membrane Proteins/immunology , Th2 Cells/immunology , Animals , Asthma/genetics , Ceramides/genetics , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Genetic Predisposition to Disease , Genome-Wide Association Study , Lipid Metabolism/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Th2 Cells/pathology
18.
J Exp Med ; 216(9): 2010-2023, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31296735

ABSTRACT

The ubiquitin-editing enzyme A20 is a well-known regulator of immune cell function and homeostasis. In addition, A20 protects cells from death in an ill-defined manner. While most studies focus on its role in the TNF-receptor complex, we here identify a novel component in the A20-mediated decision between life and death. Loss of A20 in NK cells led to spontaneous NK cell death and severe NK cell lymphopenia. The few remaining NK cells showed an immature, hyperactivated phenotype, hallmarked by the basal release of cytokines and cytotoxic molecules. NK-A20-/- cells were hypersensitive to TNF-induced cell death and could be rescued, at least partially, by a combined deficiency with TNF. Unexpectedly, rapamycin, a well-established inhibitor of mTOR, also strongly protected NK-A20-/- cells from death, and further studies revealed that A20 restricts mTOR activation in NK cells. This study therefore maps A20 as a crucial regulator of mTOR signaling and underscores the need for a tightly balanced mTOR pathway in NK cell homeostasis.


Subject(s)
Homeostasis , Killer Cells, Natural/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Survival , Lymphopenia/metabolism , Lymphopenia/pathology , Mice , Tumor Necrosis Factor alpha-Induced Protein 3/deficiency
19.
Immunity ; 51(1): 169-184.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31231035

ABSTRACT

Naive CD4+ T cells differentiate into functionally diverse T helper (Th) cell subsets. Th2 cells play a pathogenic role in asthma, yet a clear picture of their transcriptional profile is lacking. We performed single-cell RNA sequencing (scRNA-seq) of T helper cells from lymph node, lung, and airways in the house dust mite (HDM) model of allergic airway disease. scRNA-seq resolved transcriptional profiles of naive CD4+ T, Th1, Th2, regulatory T (Treg) cells, and a CD4+ T cell population responsive to type I interferons. Th2 cells in the airways were enriched for transcription of many genes, including Cd200r1, Il6, Plac8, and Igfbp7, and their mRNA profile was supported by analysis of chromatin accessibility and flow cytometry. Pathways associated with lipid metabolism were enriched in Th2 cells, and experiments with inhibitors of key metabolic pathways supported roles for glucose and lipid metabolism. These findings provide insight into the differentiation of pathogenic Th2 cells in the context of allergy.


Subject(s)
Asthma/immunology , Respiratory Hypersensitivity/immunology , Respiratory System/immunology , T-Lymphocyte Subsets/immunology , Th2 Cells/immunology , Animals , Antigens, Dermatophagoides/immunology , Disease Models, Animal , Humans , Lipid Metabolism/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Orexin Receptors/genetics , Pyroglyphidae/immunology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
20.
Science ; 364(6442)2019 05 24.
Article in English | MEDLINE | ID: mdl-31123109

ABSTRACT

Although spontaneous protein crystallization is a rare event in vivo, Charcot-Leyden crystals (CLCs) consisting of galectin-10 (Gal10) protein are frequently observed in eosinophilic diseases, such as asthma. We found that CLCs derived from patients showed crystal packing and Gal10 structure identical to those of Gal10 crystals grown in vitro. When administered to the airways, crystalline Gal10 stimulated innate and adaptive immunity and acted as a type 2 adjuvant. By contrast, a soluble Gal10 mutein was inert. Antibodies directed against key epitopes of the CLC crystallization interface dissolved preexisting CLCs in patient-derived mucus within hours and reversed crystal-driven inflammation, goblet-cell metaplasia, immunoglobulin E (IgE) synthesis, and bronchial hyperreactivity (BHR) in a humanized mouse model of asthma. Thus, protein crystals may promote hallmark features of asthma and are targetable by crystal-dissolving antibodies.


Subject(s)
Adaptive Immunity/drug effects , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Asthma/therapy , Glycoproteins/chemistry , Glycoproteins/pharmacology , Immunity, Innate/drug effects , Lysophospholipase/chemistry , Lysophospholipase/pharmacology , Adjuvants, Immunologic/administration & dosage , Animals , Asthma/immunology , Asthma/pathology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/therapy , Crystallization , Disease Models, Animal , Glycoproteins/administration & dosage , Glycoproteins/immunology , Goblet Cells/immunology , Goblet Cells/pathology , Humans , Immunodominant Epitopes/immunology , Immunoglobulin E/immunology , Lysophospholipase/administration & dosage , Lysophospholipase/immunology , Metaplasia , Mice , Mice, Inbred C57BL , Mucus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL