Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8286, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092787

ABSTRACT

Over the satellite era, Antarctic sea ice exhibited an overall long-term increasing trend, contrary to the Arctic reduction under global warming. However, the drastic decline of Antarctic sea ice in 2014-2018 raises questions about its interannual and decadal-scale variabilities, which are poorly understood and predicted. Here, we identify an Antarctic sea ice decadal oscillation, exhibiting a quasi-period of 8-16 years, that is anticorrelated with the Pacific Quasi-Decadal Oscillation (r = -0.90). By combining observations, Coupled Model Intercomparison Project historical simulations, and pacemaker climate model experiments, we find evidence that the synchrony between the sea ice decadal oscillation and Pacific Quasi-Decadal Oscillation is linked to atmospheric poleward-propagating Rossby wave trains excited by heating in the central tropical Pacific. These waves weaken the Amundsen Sea Low, melting sea ice due to enhanced shortwave radiation and warm advection. A Pacific Quasi-Decadal Oscillation-based regression model shows that this tropical-polar teleconnection carries multi-year predictability.

2.
Nat Commun ; 13(1): 7396, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456576

ABSTRACT

Marine heatwaves (MHWs)-extremely warm, persistent sea surface temperature (SST) anomalies causing substantial ecological and economic consequences-have increased worldwide in recent decades. Concurrent increases in global temperatures suggest that climate change impacted MHW occurrences, beyond random changes arising from natural internal variability. Moreover, the long-term SST warming trend was not constant but instead had more rapid warming in recent decades. Here we show that this nonlinear trend can-on its own-appear to increase SST variance and hence MHW frequency. Using a Linear Inverse Model to separate climate change contributions to SST means and internal variability, both in observations and CMIP6 historical simulations, we find that most MHW increases resulted from regional mean climate trends that alone increased the probability of SSTs exceeding a MHW threshold. Our results suggest the need to carefully attribute global warming-induced changes in climate extremes, which may not always reflect underlying changes in variability.


Subject(s)
Climate Change , Global Warming , Temperature , Linear Models , Oceans and Seas
3.
PLoS Biol ; 20(10): e3001860, 2022 10.
Article in English | MEDLINE | ID: mdl-36251692

ABSTRACT

The search for ways to protect and restore ocean health is rapidly accelerating and expanding. A new collection of articles draws on biological and social sciences to suggest changes in how ocean science and conservation are conducted to achieve a sustainable, healthy and inclusive future.


Subject(s)
Conservation of Natural Resources , Social Sciences , Oceans and Seas
4.
Nat Commun ; 13(1): 3871, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790767

ABSTRACT

Multi-year El Niño events induce severe and persistent floods and droughts worldwide, with significant socioeconomic impacts, but the causes of their long-lasting behaviors are still not fully understood. Here we present a two-way feedback mechanism between the tropics and extratropics to argue that extratropical atmospheric variability associated with the North Pacific Oscillation (NPO) is a key source of multi-year El Niño events. The NPO during boreal winter can trigger a Central Pacific El Niño during the subsequent winter, which excites atmospheric teleconnections to the extratropics that re-energize the NPO variability, then re-triggers another El Niño event in the following winter, finally resulting in persistent El Niño-like states. Model experiments, with the NPO forcing assimilated to constrain atmospheric circulation, reproduce the observed connection between NPO forcing and the occurrence of multi-year El Niño events. Future projections of Coupled Model Intercomparison Project phases 5 and 6 models demonstrate that with enhanced NPO variability under future anthropogenic forcing, more frequent multi-year El Niño events should be expected. We conclude that properly accounting for the effects of the NPO on the evolution of El Niño events may improve multi-year El Niño prediction and projection.

5.
Commun Biol ; 5(1): 28, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017642

ABSTRACT

Marine fish populations commonly exhibit low-frequency fluctuations in biomass that can cause catch volatility and thus endanger the food and economic security of dependent coastal societies. Such variability has been linked to fishing intensity, demographic processes and environmental variability, but our understanding of the underlying drivers remains poor for most fish stocks. Our study departs from previous findings showing that sea surface temperature (SST) is a significant driver of fish somatic growth variability and that life-history characteristics mediate population-level responses to environmental variability. We use autoregressive models to simulate how fish populations integrate SST variability over multiple years depending on fish life span and trophic position. We find that simulated SST-driven population dynamics can explain a significant portion of observed low-frequency variability in independent observations of fisheries landings around the globe. Predictive skill, however, decreases with increasing fishing pressure, likely due to demographic truncation. Using our modelling approach, we also show that increases in the mean and variance of SST could amplify biomass volatility and lessen its predictability in the future. Overall, biological integration of high-frequency SST variability represents a null hypothesis with which to explore the drivers of low-frequency population change across upper-trophic marine species.


Subject(s)
Biomass , Fishes/physiology , Population Dynamics , Temperature , Animals , Fisheries , Models, Biological , Oceans and Seas
6.
Science ; 374(6563): eaay9165, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591645

ABSTRACT

Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño­Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. "Decadal," which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.

7.
Sci Rep ; 11(1): 6247, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737564

ABSTRACT

Quasi-decadal climate of the Kuroshio Extension (KE) is pivotal to understanding the North Pacific coupled ocean-atmosphere dynamics and their predictability. Recent observational studies suggest that extratropical-tropical coupling between the KE and the central tropical Pacific El Niño Southern Oscillation (CP-ENSO) leads to the observed preferred decadal time-scale of Pacific climate variability. By combining reanalysis data with numerical simulations from a high-resolution climate model and a linear inverse model (LIM), we confirm that KE and CP-ENSO dynamics are linked through extratropical-tropical teleconnections. Specifically, the atmospheric response to the KE excites Meridional Modes that energize the CP-ENSO (extratropicstropics), and in turn, CP-ENSO teleconnections energize the extratropical atmospheric forcing of the KE (tropicsextratropics). However, both observations and the model show that the KE/CP-ENSO coupling is non-stationary and has intensified in recent decades after the mid-1980. Given the short length of the observational and climate model record, it is difficult to attribute this shift to anthropogenic forcing. However, using a large-ensemble of the LIM we show that the intensification in the KE/CP-ENSO coupling after the mid-1980 is significant and linked to changes in the KE atmospheric downstream response, which exhibit a stronger imprint on the subtropical winds that excite the Pacific Meridional modes and CP-ENSO.

8.
Sci Rep ; 10(1): 3031, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080206

ABSTRACT

Off-equatorial wind anomalies on seasonal timescales from both the North and South Pacific, known as "precursors" of the El Niño Southern Oscillation (ENSO), have been shown to independently trigger the ENSO feedbacks in the tropics and its teleconnections to the extra-tropics. However, the impacts of ENSO precursors on Tropical Pacific Decadal-scale Variability (TPDV) is still not well understood and quantified. We show that the dynamic sequence from extra-tropical ENSO precursors to ENSO (tropics) to extra-tropical ENSO teleconnections is not only important for ENSO, but acts as a primary mechanism to filter (e.g. reddening) the low-frequency variability of the seasonal precursors into the decadal-scale variance of the Pacific basin, accounting for the largest fraction of the TPDV (~65%) and its phase. This process, which contrasts previous theories advocating for a TPDV generated internally in the tropics (e.g. ENSO residuals), is inherently unpredictable and not well reproduced in climate models and raises challenges for understanding and predicting the role of internal TPDV in future climate change scenarios.

9.
Sci Rep ; 9(1): 19949, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882768

ABSTRACT

Climate variability and climate change in Eastern Boundary Upwelling Systems (EBUS) affect global marine ecosystems services. We use passive tracers in a global ocean model hindcast at eddy-permitting resolution to diagnose EBUS low-frequency variability over 1958-2015 period. The results highlight the uniqueness of each EBUS in terms of drivers and climate variability. The wind forcing and the thermocline depth, which are potentially competitive or complementary upwelling drivers under climate change, control EBUS low-frequency variability with different contributions. Moreover, Atlantic and Pacific upwelling systems are independent. In the Pacific, the only coherent variability between California and Humboldt Systems is associated with El Niño Southern Oscillation. The remaining low-frequency variance is partially explained by the North and South Pacific expressions of the Meridional Modes. In the Atlantic, coherent variability between Canary and Benguela Systems is associated with upwelling trends, which are not dynamically linked and represent different processes. In the Canary, a negative upwelling trend is connected to the Atlantic Multi-decadal Oscillation, while in the Benguela, a positive upwelling trend is forced by a global sea level pressure trend, which is consistent with the climate response to anthropogenic forcing. The residual variability is forced by localized offshore high sea level pressure variability.

10.
Sci Rep ; 9(1): 13558, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537887

ABSTRACT

The Kuroshio Extension (KE) exhibits prominent decadal fluctuations that enhance the low-frequency variability of North Pacific climate. Using available observations, we show evidence that a preferred decadal timescale in the KE emerges from the interaction between KE and the central tropical Pacific via Meridional Modes. Specifically, we show that changes in the KE states apply a persistent downstream atmospheric response (e.g. wind stress curl, 0-12 months timescales) that projects on the atmospheric forcing of the Pacific Meridional Modes (PMM) over 9 months timescales. Subsequently, the PMM energizes the central tropical Pacific El Niño Southern Oscillation (CP-ENSO) and its atmospheric teleconnections back to the Northern Hemisphere (1-3 months timescale), which in turn excites oceanic Rossby waves in the central/eastern North Pacific that propagate westward changing the KE (~3 years timescales). Consistent with this hypothesis, the cross-correlation function between the KE and the PMM/CP-ENSO indices exhibits a significant sinusoidal shape corresponding to a preferred spectral power at decadal timescales (~10 years). This dynamics pathway (KE→PMM/CP-ENSO→KE) may provide a new mechanistic basis to explain the preferred decadal-timescale of the North Pacific and enhance decadal predictability of Pacific climate.

11.
Sci Rep ; 9(1): 10993, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358814

ABSTRACT

The causes of the extreme and persistent warming in the Northeast Pacific from the winter of 2013/14 to that of 2014/15 are still not fully understood. While global warming may have contributed, natural influences may also have played a role. El Niño events are often implicated in anomalously warm conditions along the US West Coast (USWC). However, the tropical Pacific sea surface temperature (SST) anomalies were generally weak during 2014, calling into question their role in the USWC warming. In this study, we identify tropical Pacific "sensitivity patterns" that optimally force USWC warming at a later time. We find that such sensitivity patterns do not coincide with the mature SST anomaly patterns usually associated with ENSO, but instead include elements associated with ENSO SST precursors and SST anomalies in the central/western equatorial Pacific. El Niño events that produce large USWC warming, irrespective of their magnitude, do project on the sensitivity pattern and are characterized by a distinct evolution of the North Pacific atmospheric and oceanic fields. However, even weak tropical SST anomalies in the right location, and not necessarily associated with ENSO, can significantly influence USWC conditions and enhance their predictability.

12.
Sci Rep ; 8(1): 6365, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686314

ABSTRACT

Population oscillations in multi-species or even single species systems are well-known but have rarely been detected at the lower trophic levels in marine systems. Nitrogen fixing cyanobacteria are a major component of the Baltic Sea ecosystem and sometimes form huge surface accumulations covering most of the sea surface. By analysing a satellite-derived 39-year (1979-2017) data archive of surface cyanobacteria concentrations we have found evidence of strikingly regular interannual oscillations in cyanobacteria concentrations in the northern Baltic Sea. These oscillations have a period of ~3 years with a high-concentration year generally followed by one or two low-concentration years. Changes in abiotic factors known to influence the growth and survival of cyanobacteria could not provide an explanation for the oscillations. We therefore assume that these oscillations are intrinsic to the marine system, caused by an unknown, probably mainly biological mechanism that may be triggered by a combination of environmental factors. Interactions between different life cycle stages of cyanobacteria as well as between predator-prey or host-parasite are possible candidates for causing the oscillations.


Subject(s)
Cyanobacteria/growth & development , Eutrophication , Seasons , Seawater/microbiology , Baltic States , Cyanobacteria/physiology , Ecosystem , Environmental Monitoring , Population Dynamics
13.
Glob Chang Biol ; 24(6): 2305-2314, 2018 06.
Article in English | MEDLINE | ID: mdl-29575413

ABSTRACT

Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries-long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on midlatitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.


Subject(s)
Climate Change , Ecosystem , El Nino-Southern Oscillation , Environmental Monitoring , Rivers , Seasons , United States
14.
PLoS One ; 11(11): e0166962, 2016.
Article in English | MEDLINE | ID: mdl-27893826

ABSTRACT

The seasonal and interannual variability of vertical transport (upwelling/downwelling) has been relatively well studied, mainly for the California Current System, including low-frequency changes and latitudinal heterogeneity. The aim of this work was to identify potentially predictable patterns in upwelling/downwelling activity along the North American west coast and discuss their plausible mechanisms. To this purpose we applied the min/max Autocorrelation Factor technique and time series analysis. We found that spatial co-variation of seawater vertical movements present three dominant low-frequency signals in the range of 33, 19 and 11 years, resembling periodicities of: atmospheric circulation, nodal moon tides and solar activity. Those periodicities might be related to the variability of vertical transport through their influence on dominant wind patterns, the position/intensity of pressure centers and the strength of atmospheric circulation cells (wind stress). The low-frequency signals identified in upwelling/downwelling are coherent with temporal patterns previously reported at the study region: sea surface temperature along the Pacific coast of North America, catch fluctuations of anchovy Engraulis mordax and sardine Sardinops sagax, the Pacific Decadal Oscillation, changes in abundance and distribution of salmon populations, and variations in the position and intensity of the Aleutian low. Since the vertical transport is an oceanographic process with strong biological relevance, the recognition of their spatio-temporal patterns might allow for some reasonable forecasting capacity, potentially useful for marine resources management of the region.


Subject(s)
Ecosystem , Seasons , Seawater/chemistry , Water Movements , North America , Temperature
15.
Glob Chang Biol ; 22(11): 3529-3538, 2016 11.
Article in English | MEDLINE | ID: mdl-27126518

ABSTRACT

Given the threats of climate change, understanding the relationship of climate with long-term population dynamics is critical for wildlife conservation. Previous studies have linked decadal climate oscillations to indices of juvenile recruitment in loggerhead sea turtles (Caretta caretta), but without a clear understanding of mechanisms. Here, we explore the underlying processes that may explain these relationships. Using the eddy-resolving Ocean General Circulation Model for the Earth Simulator, we generate hatch-year trajectories for loggerhead turtles emanating from Japan over six decades (1950-2010). We find that the proximity of the high-velocity Kuroshio Current to the primary nesting areas in southern Japan is remarkably stable and that hatchling dispersal to oceanic habitats itself does not vary on decadal timescales. However, we observe a shift in latitudes of trajectories, consistent with the Pacific Decadal Oscillation (PDO). In a negative PDO phase, the Kuroshio Extension Current (KEC) is strong and acts as a physical barrier to the northward transport of neonates. As a result, hatch-year trajectories remain mostly below 35°N in the warm, unproductive region south of the Transition Zone Chlorophyll Front (TZCF). During a positive PDO phase, however, the KEC weakens facilitating the neonates to swim north of the TZCF into cooler and more productive waters. As a result, annual cohorts from negative PDO years may face a lack of resources, whereas cohorts from positive PDO years may find sufficient resources during their pivotal first year. These model outputs indicate that the ocean circulation dynamics, combined with navigational swimming behavior, may be a key factor in the observed decadal variability of sea turtle populations.


Subject(s)
Climate Change , Turtles , Animals , Japan , Oceans and Seas
16.
Proc Natl Acad Sci U S A ; 112(35): 10962-6, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26240365

ABSTRACT

Pacific salmon are a dominant component of the northeast Pacific ecosystem. Their status is of concern because salmon abundance is highly variable--including protected stocks, a recently closed fishery, and actively managed fisheries that provide substantial ecosystem services. Variable ocean conditions, such as the Pacific Decadal Oscillation (PDO), have influenced these fisheries, while diminished diversity of freshwater habitats have increased variability via the portfolio effect. We address the question of how recent changes in ocean conditions will affect populations of two salmon species. Since the 1980s, El Niño Southern Oscillation (ENSO) events have been more frequently associated with central tropical Pacific warming (CPW) rather than the canonical eastern Pacific warming ENSO (EPW). CPW is linked to the North Pacific Gyre Oscillation (NPGO), whereas EPW is linked to the PDO, different indicators of northeast Pacific Ocean ecosystem productivity. Here we show that both coho and Chinook salmon survival rates along western North America indicate that the NPGO, rather than the PDO, explains salmon survival since the 1980s. The observed increase in NPGO variance in recent decades was accompanied by an increase in coherence of local survival rates of these two species, increasing salmon variability via the portfolio effect. Such increases in coherence among salmon stocks are usually attributed to controllable freshwater influences such as hatcheries and habitat degradation, but the unknown mechanism underlying the ocean climate effect identified here is not directly subject to management actions.


Subject(s)
Climate Change , Salmon , Animals , Pacific Ocean , Survival Rate
17.
Nature ; 518(7539): 310-1, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25693560
18.
Glob Chang Biol ; 19(6): 1662-75, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23504918

ABSTRACT

Changes in variance are infrequently examined in climate change ecology. We tested the hypothesis that recent high variability in demographic attributes of salmon and seabirds off California is related to increasing variability in remote, large-scale forcing in the North Pacific operating through changes in local food webs. Linear, indirect numerical responses between krill (primarily Thysanoessa spinifera) and juvenile rockfish abundance (catch per unit effort (CPUE)) explained >80% of the recent variability in the demography of these pelagic predators. We found no relationships between krill and regional upwelling, though a strong connection to the North Pacific Gyre Oscillation (NPGO) index was established. Variance in NPGO and related central Pacific warming index increased after 1985, whereas variance in the canonical ENSO and Pacific Decadal Oscillation did not change. Anthropogenic global warming or natural climate variability may explain recent intensification of the NPGO and its increasing ecological significance. Assessing non-stationarity in atmospheric-environmental interactions and placing greater emphasis on documenting changes in variance of bio-physical systems will enable insight into complex climate-marine ecosystem dynamics.


Subject(s)
Climate Change , Ecosystem , Animals , Biodiversity , California , Food Chain , Pacific Ocean
19.
Science ; 339(6115): 67-70, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23288537

ABSTRACT

The El Niño-Southern Oscillation (ENSO) drives large changes in global climate patterns from year to year, yet its sensitivity to continued anthropogenic greenhouse forcing is uncertain. We analyzed fossil coral reconstructions of ENSO spanning the past 7000 years from the Northern Line Islands, located in the center of action for ENSO. The corals document highly variable ENSO activity, with no evidence for a systematic trend in ENSO variance, which is contrary to some models that exhibit a response to insolation forcing over this same period. Twentieth-century ENSO variance is significantly higher than average fossil coral ENSO variance but is not unprecedented. Our results suggest that forced changes in ENSO, whether natural or anthropogenic, may be difficult to detect against a background of large internal variability.


Subject(s)
Anthozoa/growth & development , Climate Change , Fossils , Animals , Islands
20.
Proc Natl Acad Sci U S A ; 110(7): 2496-9, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23341628

ABSTRACT

Long-term time series of marine ecological indicators often are characterized by large-amplitude state transitions that can persist for decades. Understanding the significance of these variations depends critically on the underlying hypotheses characterizing expected natural variability. Using a linear autoregressive model in combination with long-term zooplankton observations off the California coast, we show that cumulative integrations of white-noise atmospheric forcing can generate marine population responses that are characterized by strong transitions and prolonged apparent state changes. This model provides a baseline hypothesis for explaining ecosystem variability and for interpreting the significance of abrupt responses and climate change signatures in marine ecosystems.


Subject(s)
Climate Change , Ecosystem , Models, Biological , Zooplankton/physiology , Animals , California , Linear Models , Oceans and Seas , Population Dynamics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...