Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Food Chem X ; 22: 101351, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38623513

ABSTRACT

Katsuwonus pelamis is a tuna species mostly sold for canned fillets, its livers were lack of utilization. This study thus investigated an oil production method combining microwave (MW) pretreatment and subcritical dimethyl ether (SDME) in aim to reach improved efficiency and oil quality. The heating characteristics from different MW powers (400, 600, and 800 W) were evaluated, and SEM showed MW having hydrolysis effect on matrix lipoprotein, the fortified recovery rate was also found. Under the MW-SDME condition with 600 W power, 1:5 solid-to-liquid ratio, and 100 min, the recovery reached 93.21% in maximal (SDME ∼50%). To further improve quality, MW powers was noticed affecting lipid types, fatty acid composition, and oxidative stability of produced oils. 1286 lipid types (mostly glyceride and phospholipid-type) were identified, while higher MW lowered the emulsifying phospholipids prompting phase separation. Several oxidation indexes consistently increased with the rising MW power, GC-MS suggested 400 W for higher DHA.

2.
Int J Food Microbiol ; 416: 110675, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38479336

ABSTRACT

The aim of this study is evaluating the protein degradation capacity of specific spoilage organisms (SSOs) Pseudomonas psychrophila and Shewanella putrefaciens in fish flesh during chilled storage and revealing the underlying genes by whole-genome sequencing (WGS). Biochemical and physical tests were performed on fish flesh inoculated with P. psychrophila and S. putrefaciens individually, including textural properties, myofibrillar fragmentation index, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles, free amino acid composition, total volatile basic nitrogen (TVB-N), trichloroacetic acid (TCA) soluble peptides, and muscle microstructure. Results showed that P. psychrophila and S. putrefaciens exhibited a strong capacity for decomposing the fish protein, and the deterioration of fish flesh texture was primarily attributed to P. psychrophila. The genes from SSOs associated with the production of proteases were identified by whole genome sequencing and serine protease may be the primary enzyme secreted by SSOs involved in the degradation of fish protein. Therefore, the present study has shed light on the mechanisms of protein degradation induced by SSOs, thereby offering valuable insights for the development of effective quality control strategies.


Subject(s)
Pseudomonas , Shewanella putrefaciens , Animals , Fish Proteins , Proteolysis , Food Microbiology , Fishes , Whole Genome Sequencing
3.
Int J Biol Macromol ; 265(Pt 2): 131011, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518947

ABSTRACT

Preserving fish meat poses a significant challenge due to its high protein and low fat content. This study introduces a novel approach that utilizes a common type of lanthanide metal-organic frameworks (Ln-MOFs), EuMOFs, in combination with 5-fluorescein isothiocyanate (FITC) and methylcellulose (MC) to develop fluorescent sensor arrays for real-time monitoring the freshness of fish meat. The EuMOF-FITC/MC fluorescence films were characterized with excellent fluorescence response, ideal morphology, good mechanical properties, and improved hydrophobicity. The efficacy of the fluorescence sensor array was evaluated by testing various concentrations of spoilage gases (such as ammonia, dimethylamine, and trimethylamine) within a 20-min timeframe using a smartphone-based camera obscura device. This sensor array enables the real-time monitoring of fish freshness, with the ability to preliminarily identify the freshness status of mackerel meat with the naked eye. Furthermore, the study employed four convolutional neural network (CNN) models to enhance the performance of freshness assessment, all of which achieved accuracy levels exceeding 93 %. Notably, the ResNext-101 model demonstrated a particularly high accuracy of 98.97 %. These results highlight the potential of the EuMOF-based fluorescence sensor array, in conjunction with the CNN model, as a reliable and accurate method for real-time monitoring the freshness of fish meat.


Subject(s)
Deep Learning , Isothiocyanates , Lanthanoid Series Elements , Animals , Fluorescein-5-isothiocyanate , Fishes , Coloring Agents , Fluorescein
4.
Food Chem ; 447: 139053, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38518616

ABSTRACT

The influence of four carbon and nitrogen substrates on the quality and flavor of a novel surimi-based product fermented with Actinomucor elegans (A. elegans) was investigated, with a focus on carbon and nitrogen catabolite repression. The results showed that the substrate significantly affected mycelial growth, enzyme activities, and the metabolites of A. elegans. Although glucose significantly promoted A. elegans growth by 116.69%, it decreased enzyme secretion by 69.79% for α-amylase and 59.80% for protease, most likely by triggering the carbon catabolite repression pathway. Starch, soy protein, and wheat gluten substantially affected the textural properties of the fermented surimi. Furthermore, wheat gluten significantly promoted the protease activity (102.70%) and increased protein degradation during surimi fermentation. The fishy odor of surimi was alleviated through fermentation, and a correlation between the volatile compounds and A. elegans metabolism was observed. These results explore fermentation substrates in filamentous fungi metabolism from a catabolite repression perspective.


Subject(s)
Carbon , Mucorales , Endopeptidases , Fermentation , Glutens
5.
J Sci Food Agric ; 104(7): 4226-4233, 2024 May.
Article in English | MEDLINE | ID: mdl-38299755

ABSTRACT

BACKGROUND: Dried shrimp is a high-value fishery product worldwide, but rapid and accurate assessment of its quality remains challenging. In the present study, a new method based on Raman spectroscopy was developed for assessing the quality changes in dried shrimp (Parapenaeopsis hardwickii) during storage. RESULTS: A high-quality Raman spectrum of astaxanthin (AST) was obtained from the third abdominal segment of dried shrimp. The intensity ratio (I1520/I1446) of the band from 1520 cm-1 to that at 1446 cm-1, which was ascribed to AST and protein/lipid, respectively, was calculated. I1520/I1446 can probe AST degradation in dried shrimp during storage at both 37 and 4 °C and further reflect quality changes of dried shrimp, as indicated by indices including total volatile basic nitrogen, pH and thiobarbituric acid reactive substances. CONCLUSION: Compared to conventional methods, the proposed method avoids complex and time-consuming preprocessing and provides significant advantages including cost-effectiveness and rapid detection. © 2024 Society of Chemical Industry.


Subject(s)
Penaeidae , Spectrum Analysis, Raman , Animals , Seafood , Xanthophylls/chemistry , Penaeidae/chemistry
6.
J Hazard Mater ; 465: 133282, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38142652

ABSTRACT

Aged microplastics (MPs) in the environment are a growing concern due to their higher ecological toxicity compared to pristine MPs. While previous studies have explored aging behaviors of MPs under various stress conditions, little is known about their aging during food processing. In this study, we investigated the effects of different thermal food processing methods on the aging of polystyrene (PS) MPs within mussels. We subjected the mussels containing PS MPs to boiling, boiling/solar drying, boiling/hot air drying, and boiling/microwave drying treatments, all of which are common preservation methods used in industry. We analyzed the particle size, surface morphology, yellowing, crystallinity, chemical groups, and hydrophilicity of the PS MPs to understand the aging process. Results show that all processing methods led to aging of PS MPs, with boiling/microwave drying having the most significant impact, followed by boiling/hot air drying, boiling/solar drying, and boiling alone. The aged PS MPs exhibited smaller size, morphological changes, reduced crystallinity, increased yellowness index and carbonyl index, higher presence of O-containing groups, and enhanced hydrophilicity. These findings provide evidence of MPs aging during thermal food processing and emphasize the potential risks associated with this pathway.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Microplastics/metabolism , Polystyrenes/metabolism , Plastics/metabolism , Water Pollutants, Chemical/analysis , Aging
7.
Cell Mol Biol Lett ; 28(1): 88, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891477

ABSTRACT

The musculoskeletal system supports the movement of the entire body and provides blood production while acting as an endocrine organ. With aging, the balance of bone homeostasis is disrupted, leading to bone loss and degenerative diseases, such as osteoporosis, osteoarthritis, and intervertebral disc degeneration. Skeletal diseases have a profound impact on the motor and cognitive abilities of the elderly, thus creating a major challenge for both global health and the economy. Cellular senescence is caused by various genotoxic stressors and results in permanent cell cycle arrest, which is considered to be the underlying mechanism of aging. During aging, senescent cells (SnCs) tend to aggregate in the bone and trigger chronic inflammation by releasing senescence-associated secretory phenotypic factors. Multiple signalling pathways are involved in regulating cellular senescence in bone and bone marrow microenvironments. Targeted SnCs alleviate age-related degenerative diseases. However, the association between senescence and age-related diseases remains unclear. This review summarises the fundamental role of senescence in age-related skeletal diseases, highlights the signalling pathways that mediate senescence, and discusses potential therapeutic strategies for targeting SnCs.


Subject(s)
Intervertebral Disc Degeneration , Osteoporosis , Humans , Aged , Cellular Senescence , Aging/metabolism , Osteoporosis/therapy , Bone and Bones/metabolism , Intervertebral Disc Degeneration/therapy
8.
Foods ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36981250

ABSTRACT

Histamine is one of the most concerned safety indicators in fish sauce. Considering its charge property, electrodialysis (ED) was used to control the histamine in fish sauce, and studies were focused on three operating parameters: input current, pH, and flow velocity. A Box-Behnken design and response surface methodology was adopted to derive a statistical model, which indicated that 5.1 A input current, pH 3.8, and 40 L∙h-1 flow velocity were optimal operation conditions. Under this condition, the histamine removal rate reached 53.41% and the histamine content met the allowable histamine limit of below 400 mg·kg-1 in fish sauce, while the amino nitrogen (ANN) loss rate was only 15.46%. In addition, amino acids and volatile compounds changed differently during ED. As a result, with decreased histamine, the fish sauce after ED was also less salty and less fishy. The study first explored utilizing ED to remove histamine from fish sauce, which has positive implications for promoting the safety of aquatic products.

9.
J Agric Food Chem ; 71(8): 3599-3619, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36802555

ABSTRACT

The prevalence of neurodegenerative, cerebrovascular, and psychiatric diseases and other neurological disorders has increased dramatically worldwide. Fucoxanthin is an algal pigment with many biological functions, and there is rising evidence that fucoxanthin plays a preventive and therapeutic role in neurological disorders. This review focuses on the metabolism, bioavailability, and blood-brain barrier penetration of fucoxanthin. Furthermore, the neuroprotective potential of fucoxanthin in neurodegenerative diseases, cerebrovascular diseases, and psychiatric diseases as well as other neurological disorders such as epilepsy, neuropathic pain, and brain tumors by acting on multiple targets will be summarized. The multiple targets include regulating apoptosis, reducing oxidative stress, activating the autophagy pathway, inhibiting Aß aggregation, improving dopamine secretion, reducing α-synuclein aggregation, attenuating neuroinflammation, modulating gut microbiota, and activating brain-derived neurotrophic factor, etc. Additionally, we look forward to brain-targeted oral transport systems due to the low bioavailability and blood-brain barrier permeability of fucoxanthin. We also propose exploring the systemic mechanisms of fucoxanthin metabolism and transport through the gut-brain process and envision new therapeutic targets for fucoxanthin to act on the central nervous system. Finally, we propose dietary fucoxanthin delivery interventions to achieve preventive effects on neurological disorders. This review provides a reference for the application of fucoxanthin in the neural field.


Subject(s)
Neurodegenerative Diseases , Xanthophylls , Humans , Apoptosis , Brain , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Xanthophylls/therapeutic use , Xanthophylls/pharmacology , Food
10.
Food Chem ; 408: 135147, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36527918

ABSTRACT

Generally, whey protein concentrate (WPC) undergoes high-temperature denaturation and aggregation, which reduces its emulsifying properties and is not conducive to as an emulsifier to maintain the thermal stability of emulsions. In this study, dynamic high-pressure microfluidization technology (DHPM) combined with TGase (TG) cross-linking was applied to prepare DHPM-TG-WPC, and the thermal stabilization mechanism of nanoemulsions prepared with DHPM-TG-WPC was explored. Results showed DHPM treatment could promote the formation of TG-crosslinked WPC polymers. Compared to WPC, the free sulfhydryl and free amino group content of DHPM-TG-WPC was significantly decreased (P < 0.05), the surface hydrophobicity and interfacial tension of DHPM-TG-WPC were increased by 45.23 % and 62.34 %, respectively. And its emulsifying stability index and interface protein adsorption was significantly enhanced (P < 0.05). Furthermore, compared to WPC, DHPM-WPC and TG-WPC, DHPM-TG-WPC-stabilized nanoemulsions showed the best 15 days of storage stability after thermal sterilization. This study provides a theoretical basis for the application of modified-WPC emulsion.


Subject(s)
Emulsifying Agents , Transglutaminases , Whey Proteins/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Water
11.
Food Chem ; 403: 134387, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36358095

ABSTRACT

An interesting phenomenon that plasma-activated water (PAW) treatment reduced the malonaldehyde (MDA) content in muscle foods was observed in both previous reports and the present study. However, the mechanism remains unclear. To clarify the theoretical basis of this phenomenon, the main reactive components in PAW were determined, and the changes in the fatty acid profile in tuna muscle after PAW treatment were analyzed. The results showed that the MDA content reduction upon PAW treatment was not due to the inhibition of lipid oxidation. To mimic the possible reaction of the components in PAW with MDA, individual hydrogen peroxide, nitrite, and nitrate or their mixture solution were added into MDA standard and tuna muscle. The results showed that the reaction of nitrite in PAW with MDA occurred during its measurement processes caused its reduction. The results in this work fully explained why PAW treatment reduced the MDA content in muscle foods.


Subject(s)
Nitrites , Water Purification , Malondialdehyde , Nitrates , Muscles
12.
Bioresour Bioprocess ; 10(1): 95, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38647832

ABSTRACT

A promising way to utilize fish by-products is to develop hydrolysis of fish proteins with enzymes. The obtained fish protein hydrolysates (FPHs) are rich in peptides and amino acids, but bitterness and aroma defects impede further utilization of FPHs. The present study adopted Maillard reaction to improve FPHs' flavor and illustrated the role of cysteine in this system. We investigated the impact of cysteine (0, 0.25%, 0.5%, 0.75%, and 1%) on the browning intensity, free amino acids (FAAs), molecular weight distribution, structure of MRPs, volatile compounds changes and organoleptic characteristics of xylose-glycine-FPHs Maillard reaction systems. Results showed that the addition of cysteine lowered the browning degree of Maillard reaction products (MRPs) by inhibiting the cross-linking of small peptides and reducing the production of melanin. GC-MS and GC-IMS analysis indicated that cysteine inhibited the formation of furans and nitrogen-containing compounds and facilitated the formation of sulfur-containing compounds contributing to the meaty flavor. Sensory analysis revealed that 0.25-0.75% range of cysteine increased the meaty, caramel, umami, mouthfulness and salty notes, and caused a decrease in bitter taste of the MRPs as confirmed by GC-MS. A highly significant correlation between the organoleptic characteristics and physicochemical indicators of MRPs was found by Mantel test. These results elucidated the influence of cysteine on the formation of Maillard reaction products and will help improve the flavor profile of meat flavorings.

13.
Front Microbiol ; 13: 979388, 2022.
Article in English | MEDLINE | ID: mdl-36406445

ABSTRACT

Malondialdehyde (MDA) is one of the most representative reactive carbonyl species (RCSs) produced by lipid oxidation in food. However, the inhibitory effect of MDA on microorganisms has received little attention. Thus, the aim of this study was to reveal the antibacterial mechanism of MDA on Staphylococcus xylosus and Lactiplantibacillus plantarum isolated from dry-cured fish. The results showed that the minimum inhibitory concentrations (MICs) of MDA on S. xylosus and L. plantarum were 90 µg/ml and 180 µg/ml, respectively. Time-kill curves indicated a concentration-dependent antibacterial activity of MDA. Moreover, cell wall damage, cell membrane depolarization, intracellular adenosine triphosphate (ATP) decline, Ca2+ and Mg2+ leakage, cell morphological destruction and alterations in intracellular biomolecules were observed, which indicated the negative influence of MDA on cell membrane and cellular homeostasis. This study demonstrated the potential antimicrobial properties of MDA and provided theoretical support for the scientific prevention and control of lipid oxidation and microbial contamination in food. This study demonstrated the potential antibacterial properties of MDA and further enriches theoretical studies on the effects of lipid oxidation on microorganisms.

14.
Int J Biol Macromol ; 219: 1272-1283, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36058394

ABSTRACT

The objective of this study was to investigate the potential application of chitosan coatings incorporating epigallocatechin gallate (EGCG) for preserving fillets of bighead carp during chilled storage. The fillets were coated with acetic acid and glycerol, chitosan, and chitosan-EGCG, respectively, and the changes in their physicochemical, microbiological, and sensory characteristics during storage at 4 °C were determined. Notably, total volatile basic nitrogen, thiobarbituric-acid-reactive substances, and K value of chitosan-EGCG coated fillets sampled on day 15 were 48.04 %, 60.19 %, and 32.91 % lower than untreated fillets, respectively. Microbial enumeration suggested that the inclusion of EGCG significantly improved the inhibitory effect of pure chitosan coating on the proliferation of microorganisms. Furthermore, the chitosan-EGCG coated fillets also performed the best in terms of color, texture, and sensory analysis, and extended the shelf-life of the fillets for at least 6 days. A principal component analysis further confirmed the preserving effect of the chitosan-EGCG coating. Mantel test results suggested that the fillets' organoleptic characteristics strongly correlated with physicochemical and microbiological indicators. Overall, this work provides an effective protocol for food quality control and the extension of shelf life during chilled storage, and it clarifies the relationships between organoleptic characteristics and physicochemical and microbiological indexes.


Subject(s)
Carps , Chitosan , Animals , Catechin/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Food Preservation/methods , Food Storage/methods , Glycerol/analysis , Nitrogen/analysis
15.
Crit Rev Food Sci Nutr ; : 1-24, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36062818

ABSTRACT

Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120476, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34662768

ABSTRACT

Au-Ag alloy nanoparticles (NPs) with controllable size and composition were synthesized by a facile, one-pot hydrothermal method. Various characterization techniques including TEM, UV-vis, EDX, HAADF-STEM and XPS were used to discuss the influencing factors for the size and composition of Au-Ag alloy NPs. It is obvious that the size and composition of Au-Ag alloy NPs could be adjusted by the experimental parameters. Catalytic and SERS performance of the Au-Ag alloy NPs were further investigated. Ideal catalytic and SERS performance could be also obtained via optimizing the size and composition of Au-Ag alloy. This work is of importance in theory research and practical application of the noble metal nanocomposites.


Subject(s)
Alloys , Metal Nanoparticles , Catalysis , Gold , Silver
18.
BMC Neurosci ; 22(1): 56, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34525970

ABSTRACT

BACKGROUND: NRXN1 deletions are identified as one of major rare risk factors for autism spectrum disorder (ASD) and other neurodevelopmental disorders. ASD has 30% co-morbidity with epilepsy, and the latter is associated with excessive neuronal firing. NRXN1 encodes hundreds of presynaptic neuro-adhesion proteins categorized as NRXN1α/ß/γ. Previous studies on cultured cells show that the short NRXN1ß primarily exerts excitation effect, whereas the long NRXN1α which is more commonly deleted in patients involves in both excitation and inhibition. However, patient-derived models are essential for understanding functional consequences of NRXN1α deletions in human neurons. We recently derived induced pluripotent stem cells (iPSCs) from five controls and three ASD patients carrying NRXN1α+/- and showed increased calcium transients in patient neurons. METHODS: In this study we investigated the electrophysiological properties of iPSC-derived cortical neurons in control and ASD patients carrying NRXN1α+/- using patch clamping. Whole genome RNA sequencing was carried out to further understand the potential underlying molecular mechanism. RESULTS: NRXN1α+/- cortical neurons were shown to display larger sodium currents, higher AP amplitude and accelerated depolarization time. RNASeq analyses revealed transcriptomic changes with significant upregulation glutamatergic synapse and ion channels/transporter activity including voltage-gated potassium channels (GRIN1, GRIN3B, SLC17A6, CACNG3, CACNA1A, SHANK1), which are likely to couple with the increased excitability in NRXN1α+/- cortical neurons. CONCLUSIONS: Together with recent evidence of increased calcium transients, our results showed that human NRXN1α+/- isoform deletions altered neuronal excitability and non-synaptic function, and NRXN1α+/- patient iPSCs may be used as an ASD model for therapeutic development with calcium transients and excitability as readouts.


Subject(s)
Autism Spectrum Disorder/genetics , Calcium-Binding Proteins/genetics , Gene Regulatory Networks/physiology , Induced Pluripotent Stem Cells/physiology , Neural Cell Adhesion Molecules/genetics , Neurons/physiology , Adolescent , Autism Spectrum Disorder/metabolism , Calcium-Binding Proteins/metabolism , Cell Line , Cells, Cultured , Child , Child, Preschool , Female , Humans , Male , Neural Cell Adhesion Molecules/metabolism , Young Adult
19.
Stem Cell Res ; 53: 102254, 2021 05.
Article in English | MEDLINE | ID: mdl-33631419

ABSTRACT

NRXN1 deletions are commonly found in autism spectrum disorder (ASD) and other neurodevelopmental/neuropsychiatric disorders. Derivation of induced pluripotent stem cells (iPSCs) from different diseases involving different deletion regions are essential, as NRXN1 may produce thousands of splicing variants. We report here the derivation of iPSCs from a sibling control and an ASD proband carrying de novo heterozygous deletions in the middle region of NRXN1, using a non-integrating Sendai viral kit. The genotype and karyotype of the iPSCs were validated by whole genome SNP array. All iPSC lines highly expressed pluripotency markers and could be differentiated into three germ layers.


Subject(s)
Autism Spectrum Disorder , Induced Pluripotent Stem Cells , Autism Spectrum Disorder/genetics , Calcium-Binding Proteins , Cell Differentiation , Humans , Male , Neural Cell Adhesion Molecules , Sendai virus , Siblings
20.
Stem Cell Res ; 52: 102222, 2021 04.
Article in English | MEDLINE | ID: mdl-33578364

ABSTRACT

NRXN1 encodes thousands of splicing variants categorized into long NRXN1α, short NRXN1ß and extremely short NRXN1γ, which exert differential roles in neuronal excitation/inhibition. NRXN1α deletions are common in autism spectrum disorder (ASD) and other neurodevelopmental/neuropsychiatric disorders. We derived induced pluripotent stem cells (iPSCs) from one sibling control and two ASD probands carrying NRXN1α+/-, using non-integrating Sendai viral method. All iPSCs highly expressed pluripotency markers and could be differentiated into ectodermal/mesodermal/endodermal cells. The genotype and karyotype of the iPSCs were validated by whole genome SNP array. The availability of the iPSCs offers an opportunity for understanding NRXN1α function in human neurons and in ASD.


Subject(s)
Autism Spectrum Disorder , Induced Pluripotent Stem Cells , Autism Spectrum Disorder/genetics , Cell Differentiation , Humans , Sendai virus , Siblings
SELECTION OF CITATIONS
SEARCH DETAIL
...