Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328130

ABSTRACT

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition we generated a single nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting especially activation of proinflammatory pathways. We further generated single nucleus multiomic data from four human AKI samples including validation by genome-wide identification of NF-kB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubule cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.

2.
Nat Commun ; 15(1): 1396, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360882

ABSTRACT

Emerging spatially resolved transcriptomics technologies allow for the measurement of gene expression in situ at cellular resolution. We apply direct RNA hybridization-based in situ sequencing (dRNA HybISS, Cartana part of 10xGenomics) to compare male and female healthy mouse kidneys and the male kidney injury and repair timecourse. A pre-selected panel of 200 genes is used to identify cell state dynamics patterns during injury and repair. We develop a new computational pipeline, CellScopes, for the rapid analysis, multi-omic integration and visualization of spatially resolved transcriptomic datasets. The resulting dataset allows us to resolve 13 kidney cell types within distinct kidney niches, dynamic alterations in cell state over the course of injury and repair and cell-cell interactions between leukocytes and kidney parenchyma. At late timepoints after injury, C3+ leukocytes are enriched near pro-inflammatory, failed-repair proximal tubule cells. Integration of snRNA-seq dataset from the same injury and repair samples also allows us to impute the spatial localization of genes not directly measured by dRNA HybISS.


Subject(s)
Kidney , Transcriptome , Mice , Animals , Male , Female , Kidney/metabolism , Transcriptome/genetics , Gene Expression Profiling/methods , RNA/metabolism , Kidney Tubules, Proximal , Single-Cell Analysis/methods
3.
Genome Biol ; 25(1): 36, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287344

ABSTRACT

BACKGROUND: Mosaic loss of Y chromosome (LOY) is the most common chromosomal alteration in aging men. Here, we use single-cell RNA and ATAC sequencing to show that LOY is present in the kidney and increases with age and chronic kidney disease. RESULTS: The likelihood of a cell having LOY varies depending on its location in the nephron. Cortical epithelial cell types have a greater proportion of LOY than medullary or glomerular cell types, which may reflect their proliferative history. Proximal tubule cells are the most abundant cell type in the cortex and are susceptible to hypoxic injury. A subset of these cells acquires a pro-inflammatory transcription and chromatin accessibility profile associated with expression of HAVCR1, VCAM1, and PROM1. These injured epithelial cells have the greatest proportion of LOY and their presence predicts future kidney function decline. Moreover, proximal tubule cells with LOY are more likely to harbor additional large chromosomal gains and express pro-survival pathways. Spatial transcriptomics localizes injured proximal tubule cells to a pro-fibrotic microenvironment where they adopt a secretory phenotype and likely communicate with infiltrating immune cells. CONCLUSIONS: We hypothesize that LOY is an indicator of increased DNA damage and potential marker of cellular senescence that can be applied to single-cell datasets in other tissues.


Subject(s)
Chromosomes, Human, Y , Renal Insufficiency, Chronic , Humans , Male , Mosaicism , Aging/genetics , Phenotype , Renal Insufficiency, Chronic/genetics
4.
Physiol Genomics ; 55(11): 565-577, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37720991

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, Pkd1 and Pkd2, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the Pkd2 gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in Pkd2 knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in Pkd2 knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Animals , Mice , Cysts/complications , Mice, Knockout , Polycystic Kidney, Autosomal Dominant/genetics , Transcriptome/genetics , TRPP Cation Channels/genetics
5.
Cell Metab ; 34(12): 1977-1998.e9, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36265491

ABSTRACT

The underlying cellular events driving kidney fibrogenesis and metabolic dysfunction are incompletely understood. Here, we employed single-cell combinatorial indexing RNA sequencing to analyze 24 mouse kidneys from two fibrosis models. We profiled 309,666 cells in one experiment, representing 50 cell types/states encompassing epithelial, endothelial, immune, and stromal populations. Single-cell analysis identified diverse injury states of the proximal tubule, including two distinct early-phase populations with dysregulated lipid and amino acid metabolism, respectively. Lipid metabolism was defective in the chronic phase but was transiently activated in the very early stages of ischemia-induced injury, where we discovered increased lipid deposition and increased fatty acid ß-oxidation. Perilipin 2 was identified as a surface marker of intracellular lipid droplets, and its knockdown in vitro disrupted cell energy state maintenance during lipid accumulation. Surveying epithelial cells across nephron segments identified shared and unique injury responses. Stromal cells exhibited high heterogeneity and contributed to fibrogenesis by epithelial-stromal crosstalk.


Subject(s)
Kidney , Lipolysis , Animals , Mice , Fibrosis , Lipids
6.
Nat Commun ; 13(1): 6497, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310237

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of end stage renal disease characterized by progressive expansion of kidney cysts. To better understand the cell types and states driving ADPKD progression, we analyze eight ADPKD and five healthy human kidney samples, generating single cell multiomic atlas consisting of ~100,000 single nucleus transcriptomes and ~50,000 single nucleus epigenomes. Activation of proinflammatory, profibrotic signaling pathways are driven by proximal tubular cells with a failed repair transcriptomic signature, proinflammatory fibroblasts and collecting duct cells. We identify GPRC5A as a marker for cyst-lining collecting duct cells that exhibits increased transcription factor binding motif availability for NF-κB, TEAD, CREB and retinoic acid receptors. We identify and validate a distal enhancer regulating GPRC5A expression containing these motifs. This single cell multiomic analysis of human ADPKD reveals previously unrecognized cellular heterogeneity and provides a foundation to develop better diagnostic and therapeutic approaches.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Single-Cell Analysis , Kidney/metabolism , Kidney Tubules/metabolism , Epithelial Cells/metabolism , Cysts/metabolism , Receptors, G-Protein-Coupled/metabolism
7.
Kidney Int ; 102(3): 482-491, 2022 09.
Article in English | MEDLINE | ID: mdl-35788360

ABSTRACT

Defining changes in gene expression during health and disease is critical for the understanding of human physiology. In recent years, single-cell/nuclei RNA sequencing (sc/snRNAseq) has revolutionized the definition and discovery of cell types and states as well as the interpretation of organ- and cell-type-specific signaling pathways. However, these advances require tissue dissociation to the level of the single cell or single nuclei level. Spatially resolved transcriptomics (SrT) now provides a platform to overcome this barrier in understanding the physiological contexts of gene expression and cellular microenvironment changes in development and disease. Some of these transcriptomic tools allow for high-resolution mapping of hundreds of genes simultaneously in cellular and subcellular compartments. Other tools offer genome depth mapping but at lower resolution. We review advances in SrT, considerations for using SrT in your own research, and applications for kidney biology.


Subject(s)
Kidney , Transcriptome , Cellular Microenvironment , Gene Expression Profiling , Humans
8.
Cell Stem Cell ; 29(7): 1011-1012, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35803221

ABSTRACT

In this issue of Cell Stem Cell, Tran and colleagues develop a platform for differentiating thousands of miniature kidney organoids consisting of one or two nephron-like structures each. They use this platform to identify a potent new inhibitor of cyst growth in organoid models of autosomal-dominant polycystic kidney disease.


Subject(s)
Kidney , Organoids , Drug Evaluation, Preclinical , Nephrons
9.
Nat Commun ; 13(1): 2317, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484146

ABSTRACT

The role of mechanical forces driving kidney epithelial fluid transport and morphogenesis in kidney diseases is unclear. Here, using a microfluidic platform to recapitulate fluid transport activity of kidney cells, we report that renal epithelial cells can actively generate hydraulic pressure gradients across the epithelium. The fluidic flux declines with increasing hydraulic pressure until a stall pressure, in a manner similar to mechanical fluid pumps. For normal human kidney cells, the fluidic flux is from apical to basal, and the pressure is higher on the basal side. For human Autosomal Dominant Polycystic Kidney Disease cells, the fluidic flux is reversed from basal to apical. Molecular and proteomic studies reveal that renal epithelial cells are sensitive to hydraulic pressure gradients, changing gene expression profiles and spatial arrangements of ion exchangers and the cytoskeleton in different pressure conditions. These results implicate mechanical force and hydraulic pressure as important variables during kidney function and morphological change, and provide insights into pathophysiological mechanisms underlying the development and transduction of hydraulic pressure gradients.


Subject(s)
Membrane Transport Proteins , Polycystic Kidney, Autosomal Dominant , Epithelial Cells/metabolism , Female , Humans , Kidney , Male , Membrane Transport Proteins/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , Proteomics
10.
J Am Soc Nephrol ; 33(2): 279-289, 2022 02.
Article in English | MEDLINE | ID: mdl-34853151

ABSTRACT

BACKGROUND: Single-cell sequencing technologies have advanced our understanding of kidney biology and disease, but the loss of spatial information in these datasets hinders our interpretation of intercellular communication networks and regional gene expression patterns. New spatial transcriptomic sequencing platforms make it possible to measure the topography of gene expression at genome depth. METHODS: We optimized and validated a female bilateral ischemia-reperfusion injury model. Using the 10× Genomics Visium Spatial Gene Expression solution, we generated spatial maps of gene expression across the injury and repair time course, and applied two open-source computational tools, Giotto and SPOTlight, to increase resolution and measure cell-cell interaction dynamics. RESULTS: An ischemia time of 34 minutes in a female murine model resulted in comparable injury to 22 minutes for males. We report a total of 16,856 unique genes mapped across our injury and repair time course. Giotto, a computational toolbox for spatial data analysis, enabled increased resolution mapping of genes and cell types. Using a seeded nonnegative matrix regression (SPOTlight) to deconvolute the dynamic landscape of cell-cell interactions, we found that injured proximal tubule cells were characterized by increasing macrophage and lymphocyte interactions even 6 weeks after injury, potentially reflecting the AKI to CKD transition. CONCLUSIONS: In this transcriptomic atlas, we defined region-specific and injury-induced loss of differentiation markers and their re-expression during repair, as well as region-specific injury and repair transcriptional responses. Lastly, we created an interactive data visualization application for the scientific community to explore these results (http://humphreyslab.com/SingleCell/).


Subject(s)
Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Cell Communication/genetics , Disease Models, Animal , Female , Gene Expression Profiling/methods , Gene Expression Profiling/statistics & numerical data , Mice , Mice, Inbred C57BL , RNA-Seq , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Single-Cell Analysis/methods , Single-Cell Analysis/statistics & numerical data , Software
11.
Nat Commun ; 11(1): 2767, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488095

ABSTRACT

The pathophysiological nature of the common ABCG2 gout and hyperuricemia associated variant Q141K (rs2231142) remains undefined. Here, we use a human interventional cohort study (ACTRN12615001302549) to understand the physiological role of ABCG2 and find that participants with the Q141K ABCG2 variant display elevated serum urate, unaltered FEUA, and significant evidence of reduced extra-renal urate excretion. We explore mechanisms by generating a mouse model of the orthologous Q140K Abcg2 variant and find male mice have significant hyperuricemia and metabolic alterations, but only subtle alterations of renal urate excretion and ABCG2 abundance. By contrast, these mice display a severe defect in ABCG2 abundance and function in the intestinal tract. These results suggest a tissue specific pathobiology of the Q141K variant, support an important role for ABCG2 in urate excretion in both the human kidney and intestinal tract, and provide insight into the importance of intestinal urate excretion for serum urate homeostasis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Gout/metabolism , Hyperuricemia/metabolism , Uric Acid/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Alleles , Animals , Disease Models, Animal , Epithelium/metabolism , Epithelium/pathology , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Gout/genetics , Gout/pathology , Homeostasis , Humans , Intestines/pathology , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Proteins , Phenotype , Uric Acid/blood
12.
J Cell Sci ; 133(14)2020 07 16.
Article in English | MEDLINE | ID: mdl-32513820

ABSTRACT

Cystogenesis is a morphological consequence of numerous genetic diseases of the epithelium. In the kidney, the pathogenic mechanisms underlying the program of altered cell and tubule morphology are obscured by secondary effects of cyst expansion. Here, we developed a new 3D tubuloid system to isolate the rapid changes in protein localization and gene expression that correlate with altered cell and tubule morphology during cyst initiation. Mouse renal tubule fragments were pulsed with a cell differentiation cocktail including glial-derived neurotrophic factor (GDNF) to yield collecting duct-like tubuloid structures with appropriate polarity, primary cilia, and gene expression. Using the 3D tubuloid model with an inducible Pkd2 knockout system allowed the tracking of morphological, protein, and genetic changes during cyst formation. Within hours of inactivation of Pkd2 and loss of polycystin-2, we observed significant progression in tubuloid to cyst morphology that correlated with 35 differentially expressed genes, many related to cell junctions, matrix interactions, and cell morphology previously implicated in cystogenesis.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Animals , Glial Cell Line-Derived Neurotrophic Factor/genetics , Kidney , Kidney Tubules , Mice , Morphogenesis/genetics , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics
13.
Am J Physiol Renal Physiol ; 315(2): F332-F335, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29693448

ABSTRACT

Novel technologies, new understanding of the basement membrane composition, and better comprehension of the embryonic development of the mammalian kidney have led to explosive growth in the use of three-dimensional in vitro models to study a range of human disease pathologies (Clevers H. Cell 165: 1586-1597, 2016; Shamir ER, Ewald AJ. Nat Rev Mol Cell Biol 15: 647-664, 2014). The development of these effective model systems represents a new tool to study the progressive cystogenesis of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is a prevalent and complex monogenetic disease, characterized by the pathological formation of fluid fill cysts in renal tissue (Grantham JJ, Mulamalla S, Swenson-Fields KI. Nat Rev Nephrol 7: 556-566, 2011; Takiar V, Caplan MJ. Biochim Biophys Acta 1812: 1337-1343, 2011). ADPKD cystogenesis is attributed to loss of function mutations in either PKD1 or PKD2, which encode for two transmembrane proteins, polycystin-1 and polycystin-2, and progresses with loss of both copies of either gene through a proposed two-hit mechanism with secondary somatic mutations (Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Biochem Biophys Res Commun 322: 1374-1383, 2004; Pei Y, Watnick T, He N, Wang K, Liang Y, Parfrey P, Germino G, St George-Hyslop P. Am Soc Nephrol 10: 1524-1529, 1999; Wu G, D'Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S. Cell 93: 177-188, 1998). The exaggerated consequences of large fluid filled cysts result in fibrosis and nephron injury, leading initially to functional compensation but ultimately to dysfunction (Grantham JJ. Am J Kidney Dis 28: 788-803, 1996; Norman J. Biochim Biophys Acta 1812: 1327-1336, 2011; Song CJ, Zimmerman KA, Henke SJ, Yoder BK. Results Probl Cell Differ 60: 323-344, 2017). The complicated disease progression has scattered focus and resources across the spectrum of ADPKD research.


Subject(s)
Cell Culture Techniques , Kidney/pathology , Polycystic Kidney, Autosomal Dominant/pathology , Animals , Cell Proliferation , Cells, Cultured , Cellular Microenvironment , Disease Progression , Fibrosis , Genetic Predisposition to Disease , Humans , Kidney/metabolism , Kidney/physiopathology , Mutation , Organoids/metabolism , Organoids/pathology , Phenotype , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/physiopathology , Stem Cells/metabolism , Stem Cells/pathology , TRPP Cation Channels/genetics , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...