Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 25(8): 1111-1120, 2023 08.
Article in English | MEDLINE | ID: mdl-37460695

ABSTRACT

The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome (mtDNA) requires separate enzymatic activities that can sterically compete1, suggesting a life-long trade-off between these two processes. Here in Caenorhabditis elegans, we find that the bZIP transcription factor ATFS-1/Atf5 (refs. 2,3) regulates this balance in favour of mtDNA repair by localizing to mitochondria and interfering with the assembly of the mitochondrial pre-initiation transcription complex between HMG-5/TFAM and RPOM-1/mtRNAP. ATFS-1-mediated transcriptional inhibition decreases age-dependent mtDNA molecular damage through the DNA glycosylase NTH-1/NTH1, as well as the helicase TWNK-1/TWNK, resulting in an enhancement in the functional longevity of cells and protection against decline in animal behaviour caused by targeted and severe mtDNA damage. Together, our findings reveal that ATFS-1 acts as a molecular focal point for the control of balance between genome expression and maintenance in the mitochondria.


Subject(s)
Caenorhabditis elegans Proteins , DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Caenorhabditis elegans/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , DNA Damage , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
2.
Cell Rep ; 41(13): 111875, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36577367

ABSTRACT

Nutrient availability regulates the C. elegans life cycle as well as mitochondrial physiology. Food deprivation significantly reduces mitochondrial genome (mtDNA) numbers and leads to aging-related phenotypes. Here we show that the bZIP (basic leucine zipper) protein ATFS-1, a mediator of the mitochondrial unfolded protein response (UPRmt), is required to promote growth and establish a functional germline after prolonged starvation. We find that recovery of mtDNA copy numbers and development after starvation requires mitochondrion-localized ATFS-1 but not its nuclear transcription activity. We also find that the insulin-like receptor DAF-2 functions upstream of ATFS-1 to modulate mtDNA content. We show that reducing DAF-2 activity represses ATFS-1 nuclear function while causing an increase in mtDNA content, partly mediated by mitochondrion-localized ATFS-1. Our data indicate the importance of the UPRmt in recovering mitochondrial mass and suggest that atfs-1-dependent mtDNA replication precedes mitochondrial network expansion after starvation.


Subject(s)
Caenorhabditis elegans Proteins , Genome, Mitochondrial , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Unfolded Protein Response
3.
Nat Cell Biol ; 24(2): 181-193, 2022 02.
Article in English | MEDLINE | ID: mdl-35165413

ABSTRACT

The accumulation of deleterious mitochondrial DNA (∆mtDNA) causes inherited mitochondrial diseases and ageing-associated decline in mitochondrial functions such as oxidative phosphorylation. Following mitochondrial perturbations, the bZIP protein ATFS-1 induces a transcriptional programme to restore mitochondrial function. Paradoxically, ATFS-1 is also required to maintain ∆mtDNAs in heteroplasmic worms. The mechanism by which ATFS-1 promotes ∆mtDNA accumulation relative to wild-type mtDNAs is unclear. Here we show that ATFS-1 accumulates in dysfunctional mitochondria. ATFS-1 is absent in healthy mitochondria owing to degradation by the mtDNA-bound protease LONP-1, which results in the nearly exclusive association between ATFS-1 and ∆mtDNAs in heteroplasmic worms. Moreover, we demonstrate that mitochondrial ATFS-1 promotes the binding of the mtDNA replicative polymerase (POLG) to ∆mtDNAs. Interestingly, inhibition of the mtDNA-bound protease LONP-1 increased ATFS-1 and POLG binding to wild-type mtDNAs. LONP-1 inhibition in Caenorhabditis elegans and human cybrid cells improved the heteroplasmy ratio and restored oxidative phosphorylation. Our findings suggest that ATFS-1 promotes mtDNA replication in dysfunctional mitochondria by promoting POLG-mtDNA binding, which is antagonized by LONP-1.


Subject(s)
ATP-Dependent Proteases , Caenorhabditis elegans Proteins , Caenorhabditis elegans , DNA Replication , DNA, Mitochondrial , Heteroplasmy , Mitochondria , Mitochondrial Proteins , Oxidative Phosphorylation , Transcription Factors , Animals , Humans , Animals, Genetically Modified , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/biosynthesis , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Proteolysis , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Nat Commun ; 12(1): 479, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33473112

ABSTRACT

As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPRmt) is a signaling pathway mediated by the transcription factor ATFS-1 which harbors a mitochondrial targeting sequence (MTS). Here, using the model organism Caenorhabditis elegans we demonstrate that ATFS-1 mediates an adaptable mitochondrial network expansion program that is active throughout normal development. Mitochondrial network expansion requires the relatively inefficient MTS in ATFS-1, which allows the transcription factor to be responsive to parameters that impact protein import capacity of the mitochondrial network. Increasing the strength of the ATFS-1 MTS impairs UPRmt activity by increasing accumulation within mitochondria. Manipulations of TORC1 activity increase or decrease ATFS-1 activity in a manner that correlates with protein synthesis. Lastly, expression of mitochondrial-targeted GFP is sufficient to expand the muscle cell mitochondrial network in an ATFS-1-dependent manner. We propose that mitochondrial network expansion during development is an emergent property of the synthesis of highly expressed mitochondrial proteins that exclude ATFS-1 from mitochondrial import, causing UPRmt activation.


Subject(s)
Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Biosynthesis/physiology , Animals , Caenorhabditis elegans/genetics , Energy Metabolism , Gene Expression Regulation , Molecular Chaperones , Protein Transport , Signal Transduction , Transcription Factors/metabolism , Unfolded Protein Response
5.
Mol Oncol ; 14(8): 1833-1849, 2020 08.
Article in English | MEDLINE | ID: mdl-32336014

ABSTRACT

The mutation of K-RAS represents one of the most frequent genetic alterations in cancer. Targeting of downstream effectors of RAS, including of MEK and ERK, has limited clinical success in cancer patients with K-RAS mutations. The reduced sensitivity of K-RAS-mutated cells to certain MEK inhibitors (MEKi) is associated with the feedback phosphorylation of MEK by C-RAF and with the reactivation of mitogen-activated protein kinase (MAPK) signaling. Here, we report that the RAF dimer inhibitors lifirafenib (BGB-283) and compound C show a strong synergistic effect with MEKi, including mirdametinib (PD-0325901) and selumetinib, in suppressing the proliferation of K-RAS-mutated non-small-cell lung cancer and colorectal cancer (CRC) cell lines. This synergistic effect was not observed with the B-RAFV600E selective inhibitor vemurafenib. Our mechanistic analysis revealed that RAF dimer inhibition suppresses RAF-dependent MEK reactivation and leads to the sustained inhibition of MAPK signaling in K-RAS-mutated cells. This synergistic effect was also observed in several K-RAS mutant mouse xenograft models. A pharmacodynamic analysis supported a role for the synergistic phospho-ERK blockade in enhancing the antitumor activity observed in the K-RAS mutant models. These findings support a vertical inhibition strategy in which RAF dimer and MEKi are combined to target K-RAS-mutated cancers, and have led to a Phase 1b/2 combination therapy study of lifirafenib and mirdametinib in solid tumor patients with K-RAS mutations and other MAPK pathway aberrations.


Subject(s)
Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Allosteric Regulation/drug effects , Animals , Benzimidazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Multimerization/drug effects , Time Factors , Up-Regulation/drug effects , Vemurafenib/pharmacology , Xenograft Model Antitumor Assays
6.
Proc Natl Acad Sci U S A ; 116(13): 6146-6151, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30850535

ABSTRACT

Mitochondria generate most cellular energy and are targeted by multiple pathogens during infection. In turn, metazoans employ surveillance mechanisms such as the mitochondrial unfolded protein response (UPRmt) to detect and respond to mitochondrial dysfunction as an indicator of infection. The UPRmt is an adaptive transcriptional program regulated by the transcription factor ATFS-1, which induces genes that promote mitochondrial recovery and innate immunity. The bacterial pathogen Pseudomonas aeruginosa produces toxins that disrupt oxidative phosphorylation (OXPHOS), resulting in UPRmt activation. Here, we demonstrate that Pseudomonas aeruginosa exploits an intrinsic negative regulatory mechanism mediated by the Caenorhabditis elegans bZIP protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking zip-3 were impervious to Pseudomonas aeruginosa-mediated UPRmt repression and resistant to infection. Pathogen-secreted phenazines perturbed mitochondrial function and were the primary cause of UPRmt activation, consistent with these molecules being electron shuttles and virulence determinants. Surprisingly, Pseudomonas aeruginosa unable to produce phenazines and thus elicit UPRmt activation were hypertoxic in zip-3-deletion worms. These data emphasize the significance of virulence-mediated UPRmt repression and the potency of the UPRmt as an antibacterial response.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/microbiology , Mitochondria/metabolism , Pseudomonas Infections/metabolism , Transcription Factors/metabolism , Unfolded Protein Response , Animals , Caenorhabditis elegans/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Ubiquitin-Protein Ligases/metabolism
7.
Mol Cancer Ther ; 14(10): 2187-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26208524

ABSTRACT

Oncogenic BRAF, which drives cell transformation and proliferation, has been detected in approximately 50% of human malignant melanomas and 5% to 15% of colorectal cancers. Despite the remarkable clinical activities achieved by vemurafenib and dabrafenib in treating BRAF(V600E) metastatic melanoma, their clinical efficacy in BRAF(V600E) colorectal cancer is far less impressive. Prior studies suggested that feedback activation of EGFR and MAPK signaling upon BRAF inhibition might contribute to the relative unresponsiveness of colorectal cancer to the first-generation BRAF inhibitors. Here, we report characterization of a dual RAF kinase/EGFR inhibitor, BGB-283, which is currently under clinical investigation. In vitro, BGB-283 potently inhibits BRAF(V600E)-activated ERK phosphorylation and cell proliferation. It demonstrates selective cytotoxicity and preferentially inhibits proliferation of cancer cells harboring BRAF(V600E) and EGFR mutation/amplification. In BRAF(V600E) colorectal cancer cell lines, BGB-283 effectively inhibits the reactivation of EGFR and EGFR-mediated cell proliferation. In vivo, BGB-283 treatment leads to dose-dependent tumor growth inhibition accompanied by partial and complete tumor regressions in both cell line-derived and primary human colorectal tumor xenografts bearing BRAF(V600E) mutation. These findings support BGB-283 as a potent antitumor drug candidate with clinical potential for treating colorectal cancer harboring BRAF(V600E) mutation.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Colorectal Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Naphthyridines/pharmacology , Proto-Oncogene Proteins B-raf/genetics , raf Kinases/antagonists & inhibitors , Animals , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , MAP Kinase Signaling System , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Models, Molecular , Phosphorylation , Protein Binding , Protein Processing, Post-Translational/drug effects , Tumor Burden , Xenograft Model Antitumor Assays , raf Kinases/metabolism
8.
PLoS One ; 8(6): e67158, 2013.
Article in English | MEDLINE | ID: mdl-23799143

ABSTRACT

C. elegans PUD-1 and PUD-2, two proteins up-regulated in daf-2(loss-of-function) (PUD), are homologous 17-kD proteins with a large abundance increase in long-lived daf-2 mutant animals of reduced insulin signaling. In this study, we show that both PUD-1 and PUD-2 are abundantly expressed in the intestine and hypodermis, and form a heterodimer. We have solved their crystal structure to 1.9-Å resolution and found that both proteins adopt similar ß-sandwich folds in the V-shaped dimer. In contrast, their homologs PUD-3, PUD-4, PUDL-1 and PUDL-2 are all monomeric proteins with distinct expression patterns in C. elegans. Thus, the PUD-1/PUD-2 heterodimer probably has a function distinct from their family members. Neither overexpression nor deletion of pud-1 and pud-2 affected the lifespan of WT or daf-2 mutant animals, suggesting that their induction in daf-2 worms does not contribute to longevity. Curiously, deletion of pud-1 and pud-2 was associated with a protective effect against paralysis induced by the amyloid ß-peptide (1-42), which further enhanced the protection conferred by daf-2(RNAi) against Aß.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Receptor, Insulin/genetics , Amino Acid Sequence , Amyloid beta-Peptides/pharmacology , Animals , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Crystallography, X-Ray , Forkhead Transcription Factors , Gene Expression , Hydrophobic and Hydrophilic Interactions , Longevity , Models, Molecular , Molecular Sequence Data , Peptide Fragments/pharmacology , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Stress, Physiological , Transcription Factors/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...