Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Microbiol Spectr ; 12(1): e0345023, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38014984

ABSTRACT

IMPORTANCE: H. pylori infects half of the world population and is the leading cause of gastric cancer. We previously demonstrated that gastric cancer risk is associated with gastric microbiota. Specifically, gastric urease-positive Staphylococcus epidermidis and Streptococcus salivarius had contrasting effects on H. pylori-associated gastric pathology and immune responses in germ-free INS-GAS mice. As gastritis progresses to gastric cancer, the oncogenic transcription factor Foxm1 becomes increasingly expressed. In this study, we evaluated the gastric commensal C. acnes, certain strains of which produce thiopeptides that directly inhibit FOXM1. Thiopeptide-positive C. acnes was isolated from Nicaraguan patient gastric biopsies and inoculated into germ-free INS-GAS mice with H. pylori. We, therefore, asked whether coinfection with C. acnes expressing thiopeptide and H. pylori would decrease gastric Foxm1 expression and pro-inflammatory cytokine mRNA and protein levels. Our study supports the growing literature that specific non-H. pylori gastric bacteria affect inflammatory and cancer biomarkers in H. pylori pathogenesis.


Subject(s)
Coinfection , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Mice , Animals , Stomach Neoplasms/metabolism , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Disease Models, Animal , Biomarkers, Tumor , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Forkhead Box Protein M1/genetics
2.
Gut Microbes ; 15(1): 2186677, 2023.
Article in English | MEDLINE | ID: mdl-36907988

ABSTRACT

Along with Helicobacter pylori infection, the gastric microbiota is hypothesized to modulate stomach cancer risk in susceptible individuals. Whole metagenomic shotgun sequencing (WMS) is a sequencing approach to characterize the microbiome with advantages over traditional culture and 16S rRNA sequencing including identification of bacterial and non-bacterial taxa, species/strain resolution, and functional characterization of the microbiota. In this study, we used WMS to survey the microbiome in extracted DNA from antral gastric biopsy samples from Colombian patients residing in the high-risk gastric cancer town Túquerres (n = 10, H. pylori-positive = 7) and low-risk town of Tumaco (n = 10, H. pylori-positive = 6). Kraken2/Bracken was used for taxonomic classification and abundance. Functional gene profiles were inferred by InterProScan and KEGG analysis of assembled contigs and gene annotation. The most abundant taxa represented bacteria, non-human eukaryota, and viral genera found in skin, oral, food, and plant/soil environments including Staphylococus, Streptococcus, Bacillus, Aspergillus, and Siphoviridae. H. pylori was the predominant taxa present in H. pylori-positive samples. Beta diversity was significantly different based on H. pylori-status, risk group, and sex. WMS detected more bacterial taxa than 16S rRNA sequencing and aerobic, anaerobic, and microaerobic culture performed on the same gastric biopsy samples. WMS identified significant differences in functional profiles found between H. pylori-status, but not risk or sex groups. H. pylori-positive samples were significantly enriched for H. pylori-specific genes including virulence factors such as vacA, cagA, and urease, while carbohydrate and amino acid metabolism genes were enriched in H. pylori-negative samples. This study shows WMS has the potential to characterize the taxonomy and function of the gastric microbiome as risk factors for H. pylori-associated gastric disease. Future studies will be needed to compare and validate WMS versus traditional culture and 16S rRNA sequencing approaches for characterization of the gastric microbiome.


Subject(s)
Gastritis , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Microbiota , Stomach Neoplasms , Humans , Stomach Neoplasms/microbiology , Colombia , RNA, Ribosomal, 16S/genetics , Helicobacter Infections/microbiology , Gastritis/pathology , Helicobacter pylori/genetics , Biopsy , Risk Factors , South America
3.
Comp Med ; 72(4): 220-229, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35882504

ABSTRACT

Klebsiella pneumoniae (Kp) is a gram-negative opportunistic pathogen that causes severe pneumonia, pyelonephritis, and sepsis in immunocompromised hosts. During a 4-mo interval, several NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) breeders and pups in our facilities were diagnosed with Kp infections. An initial 6 adult and 1 juvenile NSG mice were submitted for necropsy and histologic examination because of acute onset of diarrhea and death. The evaluation revealed typhlocolitis in 2 of the mice and tritrichomoniasis in all 7. Escherichia coli positive for polyketide synthase (pks+) and Kp were isolated from the intestines. Given a history of sepsis due to pks+ E. coli in NSG mice in our facilities and determination of its antimicrobial susceptibility, trimethoprim-sulfamethoxazole (TMP-SMX) was administered to the colony in the drinking water for 4 wk. After this intervention, an additional 21 mice became ill or died; 11 of these mice had suppurative pneumonia, meningoencephalitis, hepatitis, metritis, pyelonephritis, or sepsis. Kp was cultured from pulmonary abscesses or blood of 10 of the mice. Whole-genome sequencing (WGS) indicated that the Kp isolates contained genes associated with phenotypes found in pore-forming Kp isolates cultured from humans with ulcerative colitis and primary sclerosing cholangitis. None of the Kp isolates exhibited a hyperviscous phenotype, but 13 of 14 were resistant to TMP-SMX. Antimicrobial susceptibility testing indicated sensitivity of the Kp to enrofloxacin, which was administered in the drinking water. Antibiotic sensitivity profiles were confirmed by WGS of the Kp strains; key virulence and resistance genes to quaternary ammonia compounds were also identified. Enrofloxacin treatment resulted in a marked reduction in mortality, and the study using the NSG mice was completed successfully. Our findings implicate intestinal translocation of Kp as the cause of pneumonia and systemic infections in NSG mice and highlight the importance of identification of enteric microbial pathogens and targeted antibiotic selection when treating bacterial infections in immunocompromised mice.


Subject(s)
Drinking Water , Pneumonia , Pyelonephritis , Sepsis , Adult , Animals , Anti-Bacterial Agents/pharmacology , Enrofloxacin , Escherichia coli , Humans , Immunocompromised Host , Klebsiella pneumoniae , Mice , Mice, Inbred NOD , Microbial Sensitivity Tests , Trimethoprim, Sulfamethoxazole Drug Combination
4.
Sci Rep ; 12(1): 4430, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35292670

ABSTRACT

Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets. To understand the role of the microbiome in GI diseases, we characterized the gut microbiome of 91 healthy marmosets (303 samples) and 59 marmosets diagnosed with inflammatory bowel disease (IBD) (200 samples). Healthy marmosets exhibited "humanized," Bacteroidetes-dominant microbiomes. After up to 2 years of standardized diet, housing and husbandry, marmoset microbiomes could be classified into four distinct marmoset sources based on Prevotella and Bacteroides levels. Using a random forest (RF) model, marmosets were classified by source with an accuracy of 93% with 100% sensitivity and 95% specificity using abundance data from 4 Prevotellaceae amplicon sequence variants (ASVs), as well as single ASVs from Coprobacter, Parabacteroides, Paraprevotella, Phascolarctobacterium, Oribacterium and Fusobacterium. A single dysbiotic IBD state was not found across all marmoset sources, but IBD was associated with lower alpha diversity and a lower Bacteroides:Prevotella copri ratio within each source. IBD was highest in a Prevotella-dominant cohort, and consistent with Prevotella-linked diseases, pro-inflammatory genes in the jejunum were upregulated. RF analysis of serum biomarkers identified serum calcium, hemoglobin and red blood cell (RBC) counts as potential biomarkers for marmoset IBD. This study characterizes the microbiome of healthy captive common marmosets and demonstrates that source-specific microbiomes can be retained despite standardized diets and husbandry practices. Marmosets with IBD had decreased alpha diversity and a shift in the ratio of Bacteroides:Prevotella copri compared to healthy marmosets.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Callithrix/microbiology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Inflammatory Bowel Diseases/veterinary , Prevotella
5.
Sci Rep ; 12(1): 5277, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347206

ABSTRACT

Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets (Callithrix jacchus). Despite standardized housing, diet and husbandry, a recently described gastrointestinal syndrome characterized by duodenal ulcers and strictures was observed in a subset of marmosets sourced from the New England Primate Research Center. As changes in the gut microbiome have been associated with GI diseases, the gut microbiome of 52 healthy, non-stricture marmosets (153 samples) were compared to the gut microbiome of 21 captive marmosets diagnosed with a duodenal ulcer/stricture (57 samples). No significant changes were observed using alpha diversity metrics, and while the community structure was significantly different when comparing beta diversity between healthy and stricture cases, the results were inconclusive due to differences observed in the dispersion of both datasets. Differences in the abundance of individual taxa using ANCOM, as stricture-associated dysbiosis was characterized by Anaerobiospirillum loss and Clostridium perfringens increases. To identify microbial and serum biomarkers that could help classify stricture cases, we developed models using machine learning algorithms (random forest, classification and regression trees, support vector machines and k-nearest neighbors) to classify microbiome, serum chemistry or complete blood count (CBC) data. Random forest (RF) models were the most accurate models and correctly classified strictures using either 9 ASVs (amplicon sequence variants), 4 serum chemistry tests or 6 CBC tests. Based on the RF model and ANCOM results, C. perfringens was identified as a potential causative agent associated with the development of strictures. Clostridium perfringens was also isolated by microbiological culture in 4 of 9 duodenum samples from marmosets with histologically confirmed strictures. Due to the enrichment of C. perfringens in situ, we analyzed frozen duodenal tissues using both 16S microbiome profiling and RNAseq. Microbiome analysis of the duodenal tissues of 29 marmosets from the MIT colony confirmed an increased abundance of Clostridium in stricture cases. Comparison of the duodenal gene expression from stricture and non-stricture marmosets found enrichment of genes associated with intestinal absorption, and lipid metabolism, localization, and transport in stricture cases. Using machine learning, we identified increased abundance of C. perfringens, as a potential causative agent of GI disease and intestinal strictures in marmosets.


Subject(s)
Gastrointestinal Microbiome , Animals , Callithrix , Constriction, Pathologic , Dysbiosis/microbiology , Gastrointestinal Tract
6.
ACS Omega ; 7(6): 5401-5414, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187355

ABSTRACT

The continuing emergence of antibacterial resistance reduces the effectiveness of antibiotics and drives an ongoing search for effective replacements. Screening compound libraries for antibacterial activity in standard growth media has been extensively explored and may be showing diminishing returns. Inhibition of bacterial targets that are selectively important under in vivo (infection) conditions and, therefore, would be missed by conventional in vitro screens might be an alternative. Surrogate host models of infection, however, are often not suitable for high-throughput screens. Here, we adapted a medium-throughput Tetrahymena pyriformis surrogate host model that was successfully used to identify inhibitors of a hyperviscous Klebsiella pneumoniae strain to a high-throughput format and screened circa 1.2 million compounds. The screen was robust and identified confirmed hits from different chemical classes with potent inhibition of K. pneumoniae growth in the presence of T. pyriformis that lacked any appreciable direct antibacterial activity. Several of these appeared to inhibit capsule/mucoidy, which are key virulence factors in hypervirulent K. pneumoniae. A weakly antibacterial inhibitor of LpxC (essential for the synthesis of the lipid A moiety of lipopolysaccharides) also appeared to be more active in the presence of T. pyriformis, which is consistent with the role of LPS in virulence as well as viability in K. pneumoniae.

7.
mSphere ; 7(1): e0077221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35138124

ABSTRACT

In populations with similar prevalence of Helicobacter pylori infection, cancer risk can vary dramatically. Changes in composition or structure of bacterial communities in the stomach, either at the time of exposure or over the course of H. pylori infection, may contribute to gastric pathology. In this study, a population of 37 patients from the low-gastric-cancer-risk (LGCR) region of Tumaco, Colombia, and the high-gastric-cancer-risk (HGCR) region of Túquerres, Colombia, were recruited for gastric endoscopy. Antral biopsy specimens were processed for histology and bacterial isolation. Fifty-nine distinct species among 26 genera were isolated by aerobic, anaerobic, and microaerobic culture and confirmed by 16S rRNA analysis. Urease-positive Staphylococcus epidermidis and Streptococcus salivarius were frequently isolated from gastric biopsy specimens. We asked whether coinfection of H. pylori with urease-positive S. salivarius and/or S. epidermidis had a demonstrable effect on H. pylori-induced gastritis in the germfree (GF) INS-GAS mouse model. Coinfections with S. salivarius and/or S. epidermidis did not affect gastric H. pylori colonization. At 5 months postinfection, GF INS-GAS mice coinfected with H. pylori and S. salivarius had statistically higher pathological scores in the stomachs than mice infected with H. pylori only or H. pylori with S. epidermidis (P < 0.05). S. epidermidis coinfection with H. pylori did not significantly change stomach pathology, but levels of the proinflammatory cytokine genes Il-1ß, Il-17A , and Il-22 were significantly lower than in H. pylori-monoinfected mice. This study demonstrates that non-H. pylori urease-positive bacteria may play a role in the severity of H. pylori-induced gastric cancer in humans. IMPORTANCE Chronic infection with H. pylori is the main cause of gastric cancer, which is a global health problem. In two Colombian populations with high levels of H. pylori prevalence, the regional gastric cancer rates are considerably different. Host genetic background, H. pylori biotype, environmental toxins, and dietary choices are among the known risk factors for stomach cancer. The potential role of non-H. pylori gastric microbiota in gastric carcinogenesis is being increasingly recognized. In this study, we isolated 59 bacterial species from 37 stomach biopsy samples of Colombian patients from both low-gastric-cancer-risk and high-gastric-cancer-risk regions. Urease-positive S. epidermidis and S. salivarius commonly cultured from the stomachs, along with H. pylori, were inoculated into germfree INS-GAS mice. S. salivarius coinfection with H. pylori induced significantly higher gastric pathology than in H. pylori-monoinfected mice, whereas S. epidermidis coinfection caused significantly lower H. pylori-induced proinflammatory cytokine responses than in H. pylori-monoinfected mice. This study reinforces the argument that the non-H. pylori stomach microflora play a role in the severity of H. pylori-induced gastric cancer.


Subject(s)
Coinfection , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Streptococcus salivarius , Animals , Coinfection/complications , Cytokines , Disease Models, Animal , Helicobacter Infections/complications , Humans , Immunity , Mice , RNA, Ribosomal, 16S/genetics , Staphylococcus epidermidis/genetics , Stomach Neoplasms/etiology , Stomach Neoplasms/pathology , Streptococcus salivarius/genetics , Urease
8.
Vet Microbiol ; 266: 109337, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35074617

ABSTRACT

Escherichia coli strains encoding colibactin (pks), hemolysin-associated cytotoxic necrotizing factor (cnf), and cytolethal distending toxin (cdt) are associated with intestinal inflammation and cancer, urinary tract infection, and septicemia in susceptible hosts. Over a 2-year period, an inbred laboratory colony of specific-pathogen free (SPF) cats (∼25) presented with resorptions, stillbirths, and pyometras in >50 % of pregnancies. Hemolytic E. coli were cultured from vaginal and preputial swabs of clinically normal, intact males, healthy kittens, and placenta and fetal tissues of a dam with reproductive disorders. We hypothesized cats from this colony were colonized with cytotoxin-encoding E. coli. 27 E. coli isolates were cultured from 20 fresh feces representing the majority of cats with and without fertility failures. Two E. coli isolates were also cultured from vaginal swabs from the same cat. 22 isolates (75.9 %) demonstrated hemolysis on blood agar. Twelve isolates (41.4 %) were pks+, 14 (48.3 %) were cnf+, and 10 (34.5 %) were cdt+ by PCR. Serotypes and virulence factor profiles were consistent with the extraintestinal E. coli (ExPEC) pathotype. Antibiotic resistance to cephalothin was exhibited in 13/14 representative isolates. Whole genome sequence analysis of 3 representative isolates confirmed the hemolysin-associated cnf, cdt, and the pks gene island. Representative isolates were cytotoxic to cervical epithelial cells in vitro. This study indicated ExPEC were present in SPF cats with a history of reproductive failure. While causality cannot be established, it is probable ExPEC was associated with impaired reproductive health and breeding success. Since treatment of the colony with cefovecin, reproductive performance has appreciably improved.


Subject(s)
Cat Diseases , Escherichia coli Infections , Escherichia coli Proteins , Animals , Cats , Escherichia coli , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Female , Fertility , Male , Mutagens
9.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: mdl-33692136

ABSTRACT

Colombia, South America has one of the world's highest burdens of Helicobacter pylori infection and gastric cancer. While multidrug antibiotic regimens can effectively eradicate H. pylori, treatment efficacy is being jeopardized by the emergence of antibiotic-resistant H. pylori strains. Moreover, the spectrum of and genetic mechanisms for antibiotic resistance in Colombia is underreported. In this study, 28 H. pylori strains isolated from gastric biopsy specimens from a high-gastric-cancer-risk (HGCR) population living in the Andes Mountains in Túquerres, Colombia and 31 strains from a low-gastric-cancer-risk (LGCR) population residing on the Pacific coast in Tumaco, Colombia were subjected to antibiotic susceptibility testing for amoxicillin, clarithromycin, levofloxacin, metronidazole, rifampin, and tetracycline. Resistance-associated genes were amplified by PCR for all isolates, and 29 isolates were whole-genome sequenced (WGS). No strains were resistant to amoxicillin, clarithromycin, or rifampin. One strain was resistant to tetracycline and had an A926G mutation in its 16S rRNA gene. Levofloxacin resistance was observed in 12/59 isolates and was significantly associated with N87I/K and/or D91G/Y mutations in gyrA Most isolates were resistant to metronidazole; this resistance was significantly higher in the LGCR (31/31) group compared to the HGCR (24/28) group. Truncations in rdxA and frxA were present in nearly all metronidazole-resistant strains. There was no association between phylogenetic relationship and resistance profiles based on WGS analysis. Our results indicate H. pylori isolates from Colombians exhibit multidrug antibiotic resistance. Continued surveillance of H. pylori antibiotic resistance in Colombia is warranted in order to establish appropriate eradication treatment regimens for this population.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clarithromycin/pharmacology , Colombia/epidemiology , Drug Resistance, Bacterial/genetics , Helicobacter Infections/drug therapy , Helicobacter Infections/epidemiology , Helicobacter pylori/genetics , Humans , Metronidazole/pharmacology , Microbial Sensitivity Tests , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S , South America , Stomach Neoplasms/drug therapy
10.
Appl Environ Microbiol ; 84(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-30006402

ABSTRACT

Enterococcus faecalis is a common opportunistic pathogen that colonizes cephalic recording chambers (CRCs) of macaques used in cognitive neuroscience research. We previously characterized 15 E. faecalis strains isolated from macaques at the Massachusetts Institute of Technology (MIT) in 2011. The goal of this study was to examine how a 2014 protocol change prohibiting the use of antimicrobials within CRCs affected colonizing E. faecalis strains. We collected 20 E. faecalis isolates from 10 macaques between 2013 and 2017 for comparison to 4 isolates previously characterized in 2011 with respect to the sequence type (ST) distribution, antimicrobial resistance, biofilm formation, and changes in genes that might confer a survival advantage. ST4 and ST55 were predominant among the isolates characterized in 2011, whereas the less antimicrobial-resistant lineage ST48 emerged to dominance after 2013. Two macaques remained colonized by ST4 and ST55 strains for 5 and 4 years, respectively. While the antimicrobial resistance and virulence factors identified in these ST4 and ST55 strains remained relatively stable, we detected an increase in biofilm formation ability over time in both isolates. We also found that ST48 strains were typically robust biofilm formers, which could explain why this ST increased in prevalence. Finally, we identified mutations in the DNA mismatch repair genes mutS and mutL in separate ST55 and ST4 strains and confirmed that strains bearing these mutations displayed a hypermutator phenotype. The presence of a hypermutator phenotype may complicate future antimicrobial treatment for clinically relevant E. faecalis infections in macaques.IMPORTANCEEnterococcus faecalis is a common cause of health care-associated infections in humans, largely due to its ability to persist in the hospital environment, colonize patients, acquire antimicrobial resistance, and form biofilms. Understanding how enterococci evolve in health care settings provides insight into factors affecting enterococcal survival and persistence. Macaques used in neuroscience research have long-term cranial implants that, despite best practices, often become colonized by E. faecalis This provides a unique opportunity to noninvasively examine the evolution of enterococci on a long-term indwelling device. We collected E. faecalis strains from cephalic implants over a 7-year period and characterized the sequence type, antimicrobial resistance, virulence factors, biofilm production, and hypermutator phenotypes. Improved antimicrobial stewardship allowed a less-antimicrobial-resistant E. faecalis strain to predominate at the implant interface, potentially improving antimicrobial treatment outcomes if future clinical infections occur. Biofilm formation appears to play an important role in the persistence of the E. faecalis strains associated with these implants.


Subject(s)
Enterococcus faecalis/physiology , Gram-Positive Bacterial Infections/epidemiology , Macaca mulatta , Monkey Diseases/epidemiology , Prostheses and Implants/microbiology , Animals , Anti-Bacterial Agents/therapeutic use , Biofilms , Female , Gram-Positive Bacterial Infections/microbiology , Incidence , Male , Massachusetts/epidemiology , Monkey Diseases/microbiology , Prevalence
11.
Front Microbiol ; 9: 311, 2018.
Article in English | MEDLINE | ID: mdl-29556221

ABSTRACT

Non-human primates (NHPs) for biomedical research are commonly infected with Shigella spp. that can cause acute dysentery or chronic episodic diarrhea. These animals are often prophylactically and clinically treated with quinolone antibiotics to eradicate these possible infections. However, chromosomally- and plasmid-mediated antibiotic resistance has become an emerging concern for species in the family Enterobacteriaceae. In this study, five individual isolates of multi-drug resistant Shigella flexneri were isolated from the feces of three macaques. Antibiotic susceptibility testing confirmed resistance or decreased susceptibility to ampicillin, amoxicillin-clavulanic acid, cephalosporins, gentamicin, tetracycline, ciprofloxacin, enrofloxacin, levofloxacin, and nalidixic acid. S. flexneri isolates were susceptible to trimethoprim-sulfamethoxazole, and this drug was used to eradicate infection in two of the macaques. Plasmid DNA from all isolates was positive for the plasmid-encoded quinolone resistance gene qnrS, but not qnrA and qnrB. Conjugation and transformation of plasmid DNA from several S. flexneri isolates into antibiotic-susceptible Escherichia coli strains conferred the recipients with resistance or decreased susceptibility to quinolones and beta-lactams. Genome sequencing of two representative S. flexneri isolates identified the qnrS gene on a plasmid-like contig. These contigs showed >99% homology to plasmid sequences previously characterized from quinolone-resistant Shigella flexneri 2a and Salmonella enterica strains. Other antibiotic resistance genes and virulence factor genes were also identified in chromosome and plasmid sequences in these genomes. The findings from this study indicate macaques harbor pathogenic S. flexneri strains with chromosomally- and plasmid-encoded antibiotic resistance genes. To our knowledge, this is the first report of plasmid-mediated quinolone resistance in S. flexneri isolated from NHPs and warrants isolation and antibiotic testing of enteric pathogens before treating macaques with quinolones prophylactically or therapeutically.

12.
J Med Microbiol ; 67(1): 97-109, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29160197

ABSTRACT

Purpose. Group B Streptococcus (S. agalactiae, GBS) is a Gram-positive opportunistic pathogen that inhabits the respiratory, urogenital and gastrointestinal tracts of humans and animals. Maternal colonization of GBS is a risk factor for a spectrum of clinical diseases in humans and a principle cause of neonatal meningitis and septicaemia.Methodology. We describe polymicrobial sepsis including GBS in two gravid adult female Long-Evans rats experiencing acute mortality from a colony of long-term breeding pairs. Fluorescent in situ hybridization confirmed GBS association with pathological changes in affected tissues, including the heart and uterus.Results. Characterization of seven GBS strains obtained from clinically affected and non-affected animals indicated similar antibiotic resistance and susceptibility patterns to that of human strains of GBS. The rat strains have virulence factors known to contribute to pathogenicity, and shared serotypes with human invasive isolates. Phylogenetic analyses revealed that one rat-derived GBS strain was more closely related to human-derived strains than other rat-derived strains, strengthening the notion that interspecies transmission is possible.Conclusions. To our knowledge, this is the first investigation of genotypic and phenotypic features of rat-derived GBS strains and their comparison to human- and other animal-derived GBS strains. Since GBS commonly colonizes commercially available rats, its exclusion as a potential pathogen for immunocompromised or stressed animals is recommended.

13.
J Med Chem ; 60(12): 5002-5014, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28549219

ABSTRACT

Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Amidohydrolases/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical/methods , Drug Resistance, Multiple, Bacterial/drug effects , Enzyme Inhibitors/chemical synthesis , Female , Hep G2 Cells/drug effects , Humans , K562 Cells/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship
14.
PLoS One ; 5(6): e10915, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20531959

ABSTRACT

BACKGROUND: A homeostatic relationship with the intestinal microflora is increasingly appreciated as essential for human health and wellbeing. Mutations in the leucine-rich repeat (LRR) domain of Nod2, a bacterial recognition protein, are associated with development of the inflammatory bowel disorder, Crohn's disease. We investigated the molecular mechanisms underlying disruption of intestinal symbiosis in patients carrying Nod2 mutations. METHODOLOGY/PRINCIPAL FINDINGS: In this study, using purified recombinant LRR domains, we demonstrate that Nod2 is a direct antimicrobial agent and this activity is generally deficient in proteins carrying Crohn's-associated mutations. Wild-type, but not Crohn's-associated, Nod2 LRR domains directly interacted with bacteria in vitro, altered their metabolism and disrupted the integrity of the plasma membrane. Antibiotic activity was also expressed by the LRR domains of Nod1 and other pattern recognition receptors suggesting that the LRR domain is a conserved anti-microbial motif supporting innate cellular immunity. CONCLUSIONS/SIGNIFICANCE: The lack of anti-bacterial activity demonstrated with Crohn's-associated Nod2 mutations in vitro, supports the hypothesis that a deficiency in direct bacterial killing contributes to the association of Nod2 polymorphisms with the disease.


Subject(s)
Bacteria/drug effects , Crohn Disease/genetics , Mutation , Nod2 Signaling Adaptor Protein/pharmacology , Crohn Disease/microbiology , Humans , Recombinant Proteins/pharmacology
15.
Antimicrob Agents Chemother ; 53(12): 5015-21, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19786597

ABSTRACT

The intrinsic resistance of P. aeruginosa PAO1 to the peptide deformylase inhibitor (PDF-I) LBM415 was mediated by the MexAB-OprM and MexXY-OprM efflux pumps, the latter of which was strongly induced by LBM415. Single-step exposure of PAO1 deleted for mexAB-oprM (therefore lacking both MexAB-OprM and MexXY-OprM functions) to PDF-Is selected for nfxB mutants, which express the MexCD-OprJ efflux pump, indicating that these compounds are also substrates for this pump. Selection of resistant mutants by use of levels of LBM415 greater than that accommodated by efflux yielded two additional groups of mutations, in the methionyl-tRNA(fmet) formyltransferase (fmt) and folD genes. Both mechanisms are known to impose an in vitro growth deficit (also observed here), presumably due to impairment of protein synthesis. We surmised that this inherent impairment of protein synthesis would upregulate expression of mexXY in a fashion similar to upregulation by LBM415 or by ribosome inhibitory compounds. Transcriptional profiling and/or mexX::lux promoter fusion analysis revealed that fmt and folD mutants were strongly upregulated for mexXY and another gene known to be required for upregulation of the pump, PA5471. Complementation of the fmt mutation in trans reversed this constitutive expression. This supports the notion that MexXY has a natural physiological function responding to impairment of ribosome function or protein synthesis and that fmt mutation (Fmt bypass) and folD mutation generate the intracellular mexXY-inducing signal.


Subject(s)
Bacterial Proteins/physiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/physiology , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/genetics , Genetic Complementation Test , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Mutagenesis , Peptides/pharmacology , Tetracycline/pharmacology , Trimethoprim/pharmacology
16.
Antimicrob Agents Chemother ; 53(9): 3777-81, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19596876

ABSTRACT

LBM415 is an antibacterial agent belonging to the peptide deformylase inhibitor class of compounds. It has previously been shown to demonstrate good activity in vitro against a range of pathogens. In this study, the in vivo efficacy of LBM415 was evaluated in various mouse infection models. We investigated activity against a systemic infection model caused by intraperitoneal inoculation of Staphylococcus aureus (methicillin [meticillin] susceptible [MSSA] and methicillin resistant [MRSA]) and Streptococcus pneumoniae (penicillin susceptible [PSSP] and multidrug resistant [MDRSP]), a thigh infection model caused by intramuscular injection of MRSA, and a lung infection produced by intranasal inoculation of PSSP. In the systemic MSSA and MRSA infections, LBM415 was equivalent to linezolid and vancomycin. In the systemic PSSP infection, LBM415 was equivalent to linezolid, whereas against systemic MDRSP infection, the LBM415 50% effective dose (ED50) was 4.8 mg/kg (dosed subcutaneously) and 36.6 mg/kg (dosed orally), compared to 13.2 mg/kg for telithromycin and >60 mg/kg for penicillin V and clarithromycin. In the MRSA thigh infection, LBM415 significantly reduced thigh bacterial levels compared to those of untreated mice, with levels similar to those after treatment with linezolid at the same dose levels. In the pneumonia model, the ED50 to reduce the bacterial lung burden by >4 log10 in 50% of treated animals was 23.3 mg/kg for LBM415, whereas moxifloxacin showed an ED50 of 14.3 mg/kg. In summary, LBM415 showed in vivo efficacy in sepsis and specific organ infection models irrespective of resistance to other antibiotics. Results suggest the potential of peptide deformylase inhibitors as a novel class of therapeutic agents against antibiotic-resistant pathogens.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Pneumonia/drug therapy , Staphylococcus aureus/drug effects , Acetamides/pharmacokinetics , Acetamides/pharmacology , Acetamides/therapeutic use , Animals , Anti-Infective Agents/pharmacokinetics , Female , Linezolid , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Structure , Oxazolidinones/pharmacokinetics , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Peptides/pharmacokinetics , Pneumonia/microbiology , Streptococcus pneumoniae/drug effects , Thigh/pathology
17.
Bioorg Med Chem Lett ; 18(6): 1840-4, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18295483

ABSTRACT

Based on a pharmacophore hypothesis substituted tetramic and tetronic acid 3-carboxamides as well as dihydropyridin-2-one-3-carboxamides were investigated as inhibitors of undecaprenyl pyrophosphate synthase (UPPS) for use as novel antimicrobial agents. Synthesis and structure-activity relationship patterns for this class of compounds are discussed. Selectivity data and antibacterial activities for selected compounds are provided.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Amides/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Furans/pharmacology , Pyrrolidinones/pharmacology , Streptococcus pneumoniae/drug effects , Alkyl and Aryl Transferases/metabolism , Amides/chemical synthesis , Cyclization , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Furans/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Polyisoprenyl Phosphates/metabolism , Protein Conformation , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Sesquiterpenes/metabolism , Streptococcus pneumoniae/growth & development , Structure-Activity Relationship
19.
Antimicrob Agents Chemother ; 51(3): 1004-10, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17220413

ABSTRACT

Previous genetic analysis of Haemophilus influenzae revealed two mechanisms associated with decreased susceptibility to the novel peptide deformylase inhibitor LBM415: AcrAB-TolC-mediated efflux and Fmt bypass, resulting from mutations in the pump repressor gene acrR and in the fmt gene, respectively. We have isolated an additional mutant, CDS23 (LBM415 MIC, 64 microg/ml versus 4 microg/ml against the parent strain NB65044) that lacks mutations in the acrR or fmt structural genes or in the gene encoding Def, the intracellular target of LBM415. Western immunoblot analysis, two-dimensional gel electrophoresis, and tryptic digestion combined with mass spectrometric identification showed that the Def protein was highly overexpressed in the mutant strain. Consistent with this, real-time reverse transcription-PCR revealed a significant increase in def transcript titer. No mutations were found in the region upstream of def that might account for altered expression; however, pulsed-field gel electrophoresis suggested that a genetic rearrangement of the region containing def had occurred. Using a combination of PCR, sequencing, and Southern blot analyses, it was determined that the def gene had undergone copy number amplification, explaining the high level of target protein expression. Inactivation of the AcrAB-TolC efflux pump in this mutant increased susceptibility 16-fold, highlighting the role of efflux in exacerbating the overall reduced susceptibility resulting from target overexpression.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Chromosomes, Bacterial/genetics , Enzyme Inhibitors/pharmacology , Haemophilus influenzae/drug effects , Peptides/pharmacology , Amidohydrolases/biosynthesis , Amidohydrolases/genetics , Blotting, Southern , Culture Media , DNA, Bacterial/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli Proteins/genetics , Gene Dosage , Gene Expression Regulation, Enzymologic/drug effects , Hydrolysis , Microbial Sensitivity Tests , Mutation/physiology , Oligonucleotide Array Sequence Analysis , Repressor Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin/chemistry
20.
Antimicrob Agents Chemother ; 49(8): 3129-35, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16048914

ABSTRACT

Haemophilus influenzae isolates vary widely in their susceptibilities to the peptide deformylase inhibitor LBM415 (MIC range, 0.06 to 32 microg/ml); however, on average, they are less susceptible than gram-positive organisms, such as Staphylococcus aureus and Streptococcus pneumoniae. Insertional inactivation of the H. influenzae acrB or tolC gene in strain NB65044 (Rd strain KW20) increased susceptibility to LBM415, confirming a role for the AcrAB-TolC pump in determining resistance. Consistent with this, sequencing of a PCR fragment generated with primers flanking the acrRA region from an LBM415-hypersusceptible H. influenzae clinical isolate revealed a genetic deletion of acrA. Inactivation of acrB or tolC in several clinical isolates with atypically reduced susceptibility to LBM415 (MIC of 16 microg/ml or greater) significantly increased susceptibility, confirming that the pump is also a determinant of decreased susceptibility in these clinical isolates. Examination of acrR, encoding the putative repressor of pump gene expression, from several of these strains revealed mutations introducing frameshifts, stop codons, and amino acid changes relative to the published sequence, suggesting that loss of pump repression leads to decreased susceptibility. Supporting this, NB65044 acrR mutants selected by exposure to LBM415 at 8 microg/ml had susceptibilities to LBM415 and other pump substrates comparable to the least sensitive clinical isolates and showed increased expression of pump genes.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Haemophilus influenzae/drug effects , Membrane Transport Proteins/metabolism , Peptides/pharmacology , Amidohydrolases/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Drug Resistance, Bacterial/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Haemophilus influenzae/genetics , Haemophilus influenzae/metabolism , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Mutagenesis, Insertional , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...