Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(19): 4256-4260, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32031278

ABSTRACT

We report the first chemical synthesis of eurysterol A, a cytotoxic and antifungal marine steroidal sulfate with a unique C8-C19 oxy-bridged cholestane skeleton. After C19 hydroxylation of cholesteryl acetate, used as an inexpensive commercial starting material, the challenging oxidative functionalization of ring B was achieved by two different routes to set up a 5α-hydroxy-7-en-6-one moiety. As a key step, an intramolecular oxa-Michael addition was exploited to close the oxy-bridge (8ß,19-epoxy unit). DFT calculations show this reversible transformation being exergonic by about -30 kJ mol-1 . Along the optimized (scalable) synthetic sequence, the target natural product was obtained in only 11 steps in 5 % overall yield. In addition, an access to (isomeric) 7ß,19-epoxy steroids with a previously unknown pentacyclic ring system was discovered.


Subject(s)
Antifungal Agents/chemical synthesis , Steroids/chemistry , Sterols/chemical synthesis , Antifungal Agents/chemistry , Hydroxylation , Isomerism , Molecular Structure , Oxidation-Reduction , Sterols/chemistry
2.
Org Biomol Chem ; 17(26): 6374-6385, 2019 07 14.
Article in English | MEDLINE | ID: mdl-31090778

ABSTRACT

The concept of combinatorial biosynthesis promises access to compound libraries based on privileged natural scaffolds. Ever since the elucidation of the biosynthetic pathway towards the antibiotic erythromycin A in 1990, the predictable manipulation of type I polyketide synthase megaenzymes was investigated. However, this goal was rarely reached beyond simplified model systems. In this study, we identify the intermediates in the biosynthesis of the polyether monensin and numerous mutated variants using a targeted metabolomics approach. We investigate the biosynthetic flow of intermediates and use the experimental setup to reveal the presence of selectivity filters in polyketide synthases. These obstruct the processing of non-native intermediates in the enzymatic assembly line. Thereby we question the concept of a truly modular organization of polyketide synthases and highlight obstacles in substrate channeling along the cascade. In the search for the molecular origin of a selectivity filter, we investigate the role of different thioesterases in the monensin gene cluster and the connection between ketosynthase sequence motifs and incoming substrate structures. Furthermore, we demonstrate that the selectivity filters do not apply to new-to-nature side-chains in nascent polyketides, showing that the acceptance of these is not generally limited by downstream modules.


Subject(s)
Polyketide Synthases/metabolism , Polyketides/metabolism , Protein Engineering , Polyketides/chemistry , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL