Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Pharmacol ; 14: 1214351, 2023.
Article in English | MEDLINE | ID: mdl-37564181

ABSTRACT

The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (-)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry.

2.
Sci Signal ; 16(782): eabq1366, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37098119

ABSTRACT

Macrophages are key cellular contributors to the pathogenesis of COVID-19, the disease caused by the virus SARS-CoV-2. The SARS-CoV-2 entry receptor ACE2 is present only on a subset of macrophages at sites of SARS-CoV-2 infection in humans. Here, we investigated whether SARS-CoV-2 can enter macrophages, replicate, and release new viral progeny; whether macrophages need to sense a replicating virus to drive cytokine release; and, if so, whether ACE2 is involved in these mechanisms. We found that SARS-CoV-2 could enter, but did not replicate within, ACE2-deficient human primary macrophages and did not induce proinflammatory cytokine expression. By contrast, ACE2 overexpression in human THP-1-derived macrophages permitted SARS-CoV-2 entry, processing and replication, and virion release. ACE2-overexpressing THP-1 macrophages sensed active viral replication and triggered proinflammatory, antiviral programs mediated by the kinase TBK-1 that limited prolonged viral replication and release. These findings help elucidate the role of ACE2 and its absence in macrophage responses to SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Cytokines , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Macrophages/metabolism , Virion/metabolism
3.
iScience ; 26(4): 106323, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36925720

ABSTRACT

The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2.

4.
bioRxiv ; 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36482969

ABSTRACT

Vaccines are central to controlling the coronavirus disease 2019 (COVID-19) pandemic but the durability of protection is limited for currently approved COVID-19 vaccines. Further, the emergence of variants of concern (VoCs) that evade immune recognition has reduced vaccine effectiveness, compounding the problem. Here, we show that a single dose of a murine cytomegalovirus (MCMV)-based vaccine, which expresses the spike (S) protein of the virus circulating early in the pandemic (MCMVS), protects highly susceptible K18-hACE2 mice from clinical symptoms and death upon challenge with a lethal dose of D614G SARS-CoV-2. Moreover, MCMVS vaccination controlled two immune-evading VoCs, the Beta (B.1.135) and the Omicron (BA.1) variants in BALB/c mice, and S-specific immunity was maintained for at least 5 months after immunization, where neutralizing titers against all tested VoCs were higher at 5-months than at 1-month post-vaccination. Thus, cytomegalovirus (CMV)-based vector vaccines might allow for long-term protection against COVID-19.

5.
Nat Biotechnol ; 40(12): 1845-1854, 2022 12.
Article in English | MEDLINE | ID: mdl-35864170

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Designed Ankyrin Repeat Proteins , Cryoelectron Microscopy , Antibodies, Monoclonal/therapeutic use , Combined Antibody Therapeutics , Antibodies, Neutralizing
6.
Nucleic Acids Res ; 50(12): 6769-6785, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35713540

ABSTRACT

Antiviral innate immunity represents the first defense against invading viruses and is key to control viral infections, including SARS-CoV-2. Body temperature is an omnipresent variable but was neglected when addressing host defense mechanisms and susceptibility to SARS-CoV-2 infection. Here, we show that increasing temperature in a 1.5°C window, between 36.5 and 38°C, strongly increases the expression of genes in two branches of antiviral immunity, nitric oxide production and type I interferon response. We show that alternative splicing coupled to nonsense-mediated decay decreases STAT2 expression in colder conditions and suggest that increased STAT2 expression at elevated temperature induces the expression of diverse antiviral genes and SARS-CoV-2 restriction factors. This cascade is activated in a remarkably narrow temperature range below febrile temperature, which reflects individual, circadian and age-dependent variation. We suggest that decreased body temperature with aging contributes to reduced expression of antiviral genes in older individuals. Using cell culture and in vivo models, we show that higher body temperature correlates with reduced SARS-CoV-2 replication, which may affect the different vulnerability of children versus seniors toward severe SARS-CoV-2 infection. Altogether, our data connect body temperature and pre-mRNA processing to provide new mechanistic insight into the regulation of antiviral innate immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Aged , SARS-CoV-2/genetics , Antiviral Agents , RNA Precursors/genetics , Body Temperature , COVID-19/genetics
7.
Mol Ther ; 30(5): 1952-1965, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35339689

ABSTRACT

For coronavirus disease 2019 (COVID-19), effective and well-understood treatment options are still scarce. Since vaccine efficacy is challenged by novel variants, short-lasting immunity, and vaccine hesitancy, understanding and optimizing therapeutic options remains essential. We aimed at better understanding the effects of two standard-of-care drugs, dexamethasone and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, on infection and host responses. By using two COVID-19 hamster models, pulmonary immune responses were analyzed to characterize effects of single or combinatorial treatments. Pulmonary viral burden was reduced by anti-SARS-CoV-2 antibody treatment and unaltered or increased by dexamethasone alone. Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant disease in a severe disease model. Combination therapy showed additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into lungs upon dexamethasone treatment and identified a specifically responsive subpopulation of neutrophils, thereby indicating a potential mechanism of action. Our analyses confirm the anti-inflammatory properties of dexamethasone and suggest possible mechanisms, validate anti-viral effects of anti-SARS-CoV-2 antibody treatment, and reveal synergistic effects of a combination therapy, thus informing more effective COVID-19 therapies.


Subject(s)
COVID-19 Drug Treatment , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antibodies, Viral , Antiviral Agents , Cricetinae , Dexamethasone/pharmacology , SARS-CoV-2 , Transcriptome
8.
J Virol ; 96(5): e0218621, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35019723

ABSTRACT

Recent emergence of SARS-CoV-1 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6 cells, but HS antagonist did not inhibit virus adaptation in these cells. The entry of Vero E6-adapted virus into human cells is defective because the mutated spike variants are poorly processed by furin or TMPRSS2. Minor subpopulation that lack the furin cleavage motif in the spike protein rapidly become dominant upon passaging through Vero E6 cells, but wild type sequences are maintained at low percentage in the virus swarm and mediate a rapid reverse adaptation if the virus is passaged again on TMPRSS2+ human cells. Our data show that the spike protein of SARS-CoV-2 can rapidly adapt itself to available proteases and argue for deep sequence surveillance to identify the emergence of novel variants. IMPORTANCE Recently emerging SARS-CoV-2 variants B.1.1.7 (alpha variant), B.1.617.2 (delta variant), and B.1.1.529 (omicron variant) harbor spike mutations and have been linked to increased virus pathogenesis. The emergence of these novel variants highlights coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt to selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genomes with original genotype are maintained in the virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.


Subject(s)
COVID-19/metabolism , Furin/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Adaptation, Physiological , Animals , COVID-19/genetics , COVID-19/virology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Furin/genetics , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Mutation , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Replication
9.
Cell Mol Immunol ; 19(2): 234-244, 2022 02.
Article in English | MEDLINE | ID: mdl-34992275

ABSTRACT

Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a ß-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Humoral , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , Chlorocebus aethiops , Cytomegalovirus/immunology , Dogs , Female , HEK293 Cells , Humans , Immunity, Cellular , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Orthomyxoviridae Infections/virology , Vero Cells
10.
Sci Adv ; 7(49): eabk0172, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34851677

ABSTRACT

Vaccines are instrumental and indispensable in the fight against the COVID-19 pandemic. Several recent SARS-CoV-2 variants are more transmissible and evade infection- or vaccine-induced protection. We constructed live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and showed that the lead candidate, designated sCPD9, protects Syrian hamsters from a challenge with ancestral virus. Here, we assessed immunogenicity and protective efficacy of sCPD9 in the Roborovski dwarf hamster, a nontransgenic rodent species that is highly susceptible to SARS-CoV-2 and severe COVID-19­like disease. We show that a single intranasal vaccination with sCPD9 elicited strong cross-neutralizing antibody responses against four current SARS-CoV-2 variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.1.28.1 (Gamma), and B.1.617.2 (Delta). The sCPD9 vaccine offered complete protection from COVID-19­like disease caused by the ancestral SARS-CoV-2 variant B.1 and the two variants of concern B.1.1.7 and B.1.351.

11.
PLoS One ; 16(8): e0255622, 2021.
Article in English | MEDLINE | ID: mdl-34339474

ABSTRACT

The SARS-CoV-2 pandemic is a major global threat that sparked global research efforts. Pre-clinical and biochemical SARS-CoV-2 studies firstly rely on cell culture experiments where the importance of choosing an appropriate cell culture model is often underestimated. We here present a bottom-up approach to identify suitable permissive cancer cell lines for drug screening and virus research. Human cancer cell lines were screened for the SARS-CoV-2 cellular entry factors ACE2 and TMPRSS2 based on RNA-seq data of the Cancer Cell Line Encyclopedia (CCLE). However, experimentally testing permissiveness towards SARS-CoV-2 infection, we found limited correlation between receptor expression and permissiveness. This underlines that permissiveness of cells towards viral infection is determined not only by the presence of entry receptors but is defined by the availability of cellular resources, intrinsic immunity, and apoptosis. Aside from established cell culture infection models CACO-2 and CALU-3, three highly permissive human cell lines, colon cancer cell lines CL-14 and CL-40 and the breast cancer cell line CAL-51 and several low permissive cell lines were identified. Cell lines were characterised in more detail offering a broader choice of non-overexpression in vitro infection models to the scientific community. For some cell lines a truncated ACE2 mRNA and missense variants in TMPRSS2 might hint at disturbed host susceptibility towards viral entry.


Subject(s)
COVID-19/virology , Receptors, Virus , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cell Line, Tumor , Humans , Receptors, Virus/genetics , Receptors, Virus/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
12.
Pathogens ; 10(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202127

ABSTRACT

Equine herpesvirus type 4 (EHV-4) is enzootic in equine populations throughout the world. A large outbreak of EHV-4 respiratory infection occurred at a Standardbred horse-breeding farm in northern Germany in 2017. Respiratory illness was observed in a group of in-housed foals and mares, which subsequently resulted in disease outbreak. Out of 84 horses in the stud, 76 were tested and 41 horses were affected, including 20 foals, 10 stallions, and 11 mares. Virological investigations revealed the involvement of EHV-4 in all cases of respiratory illness, as confirmed by virus isolation, qPCR, and/or serological follow-up using virus neutralization test and peptide-specific ELISA. Among infected mares, 73% (8 out of 11) and their corresponding foals shed the virus at the same time. EHV-4 was successfully isolated from four animals (including one stallion and three foals), and molecular studies revealed a different restriction fragment length polymorphism (RFLP) profile in all four isolates. We determined the complete 144 kbp genome sequence of EHV-4 isolated from infected horses by next-generation sequencing and de novo assembly. Hence, EHV-4 is genetically stable in nature, different RFLP profiles, and genome sequences of the isolates, suggesting the involvement of more than one animal as a source of infection due to either true infection or reactivation from a latent state. In addition, epidemiological investigation revealed that stress caused by seasonal changes, management practices, routine equestrian activities, and exercises contributed as a multifactorial causation for disease outbreak. This study shows the importance of implementing stress alleviating measures and management practices in breeding farms in order to avoid immunosuppression and occurrence of disease.

13.
Cell Rep ; 36(4): 109433, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34273271

ABSTRACT

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Humans , Mutation/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Domains/genetics , Spike Glycoprotein, Coronavirus/immunology
14.
Nat Commun ; 12(1): 1577, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707427

ABSTRACT

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Affinity , COVID-19/epidemiology , Cell Line , Chlorocebus aethiops , Gene Library , Healthy Volunteers , Host Microbial Interactions/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/isolation & purification , Models, Molecular , Mutation , Neutralization Tests , Pandemics , Peptide Library , Protein Interaction Domains and Motifs , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
15.
Vet Microbiol ; 242: 108605, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32122608

ABSTRACT

The majority of influenza A virus strains are hosted in nature by avian species in the orders of Anseriformes and Charadriformes. A minority of strains have been able to cross species boundaries and establish themselves in novel non-avian hosts. Influenza viruses of horses, donkeys, and mules represent such successful events of avian to mammal influenza virus adaptation. Mongolia has over 3 million domestic horses and is home to two wild equids, the Asiatic wild ass or khulan (Equus hemionus hemionus), and Przewalski's horse (Equus ferus przewalskii). Domestic and wild equids are sympatric across most of their range in Mongolia. Epizootic influenza A virus outbreaks among Mongolian domestic horses have been frequently recorded. However, the exposure, circulation and relation to domestic horse influenza A virus outbreaks among wild equids is unknown. We evaluated serum samples of Asiatic wild asses in Mongolia for antibodies against influenza A viruses, using modified protein microarray technique. We detected antibodies against hemagglutinin (H) H1, H3, H5, H7, H8 and H10 influenza A viruses. Asiatic wild asses may represent a previously unidentified influenza A virus reservoir in an ecosystem shared with populations of domestic horses in which influenza strains circulate.


Subject(s)
Disease Reservoirs/veterinary , Equidae/virology , Influenza A virus/immunology , Orthomyxoviridae Infections/transmission , Animals , Animals, Wild/virology , Antibodies, Viral/blood , Disease Reservoirs/virology , Ecosystem , Influenza A Virus, H3N8 Subtype/pathogenicity , Influenza A Virus, H7N7 Subtype/pathogenicity , Influenza A virus/classification , Influenza A virus/pathogenicity , Mongolia/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology
16.
Nat Microbiol ; 4(11): 2025, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31576018

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Microorganisms ; 7(10)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561506

ABSTRACT

Elephant endotheliotropic herpesvirus (EEHV) can cause a devastating haemorrhagic disease in young Asian elephants worldwide. Here, we report the death of two young Asian elephants after suffering from acute haemorrhagic disease due to EEHV-1A infection. We detected widespread distribution of EEHV-1A in various organs and tissues of the infected elephants. Enveloped viral particles accumulated within and around cytoplasmic electron-dense bodies in hepatic endothelial cells were detected. Attempts to isolate the virus on different cell cultures showed limited virus replication; however, late viral protein expression was detected in infected cells. We further showed that glycoprotein B (gB) of EEHV-1A possesses a conserved cleavage site Arg-X-Lys/Arg-Arg that is targeted by the cellular protease furin, similar to other members of the Herpesviridae. We have determined the complete 180 kb genome sequence of EEHV-1A isolated from the liver by next-generation sequencing and de novo assembly. As virus isolation in vitro has been unsuccessful and limited information is available regarding the function of viral proteins, we have attempted to take the initial steps in the development of suitable cell culture system and virus characterization. In addition, the complete genome sequence of an EEHV-1A in Europe will facilitate future studies on the epidemiology and diagnosis of EEHV infection in elephants.

18.
Nat Microbiol ; 4(12): 2175-2183, 2019 12.
Article in English | MEDLINE | ID: mdl-31477893

ABSTRACT

RNA virus populations are composed of highly diverse individuals that form a cloud of related sequences commonly referred to as a 'quasispecies'1-3. This diversity arises as a consequence of low-fidelity genome replication4,5. By contrast, DNA virus populations contain more uniform individuals with similar fitness6. Genome diversity is often correlated with increased fitness in RNA viruses, while DNA viruses are thought to require more faithful genome replication. During DNA replication, erroneously incorporated bases are removed by a 3'-5' exonuclease, a highly conserved enzymatic function of replicative DNA but not RNA polymerases. This proofreading process enhances replication fidelity and ensures the genome integrity of DNA organisms, including large DNA viruses7. Here, we show that a herpesvirus can tolerate impaired exonucleolytic proofreading, resulting in DNA virus populations, which, as in RNA viruses8, are composed of highly diverse genotypes of variable individual fitness. This indicates that herpesvirus mutant diversity may compensate for individual fitness loss. Notably, in vivo infection with diverse virus populations results in a marked increase in virulence compared to genetically homogenous parental virus. While we cannot exclude that the increase in virulence is caused by selection of and/or interactions between individual genotypes, our findings are consistent with quasispecies dynamics. Our results contrast with traditional views of DNA virus replication and evolution, and indicate that a substantial increase in population diversity can lead to higher virulence.


Subject(s)
Genetic Variation , Genome, Viral , Herpesvirus 2, Gallid/genetics , Quasispecies/genetics , Virus Replication , Animals , Chickens/virology , Genetic Fitness , Genotype , Herpesvirus 2, Gallid/pathogenicity , Herpesvirus 2, Gallid/physiology , Marek Disease/virology , Mutation , Specific Pathogen-Free Organisms , Virulence/genetics
19.
Vet Med Sci ; 5(3): 361-371, 2019 08.
Article in English | MEDLINE | ID: mdl-31149784

ABSTRACT

Equid herpesviruses (EHVs) threaten equine health and can cause significant economic losses to the equine industry worldwide. Different equid herpesviruses, EHV-1, EHV-2, EHV-4 and EHV5 are regularly detected among horse populations. In Egypt, monitoring is sporadic but EHV-1 or EHV-4 have been reported to circulate in the horse population. However, there is a lack of reports related to infection and health status of horses, likely due to the absence of regular diagnostic procedures. In the current study, the circulation of four infectious equid herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5) among different Arabian horse populations and donkeys residing the same farm was monitored. Different samples were collected and DNA was extracted and subjected to quantitative (q)-PCR to detect the four equid herpesviruses using specific primers and probes. Antibody titres against EHV-1 and EHV-4 were tested using virus neutralization test and type-specific ELISA. The results showed that EHV-1, EHV-2, EHV-4 and EHV-5 are endemic and can be a continuous threat for horses in the absence of vaccination programs and frequent virus reactivation. There is an urgent need for introduction of active regular surveillance measures to investigate the presence of different equid herpesviruses, and other equine viral pathogens, in various horse populations around Egypt and to establish a standardized cataloguing of equine health status.


Subject(s)
Herpesviridae Infections/veterinary , Herpesviridae/isolation & purification , Horse Diseases/epidemiology , Animals , Egypt/epidemiology , Equidae , Female , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Horse Diseases/virology , Horses , Incidence , Male , Prevalence
20.
PLoS Pathog ; 14(1): e1006857, 2018 01.
Article in English | MEDLINE | ID: mdl-29377958

ABSTRACT

Codon pair bias deoptimization (CPBD) has enabled highly efficient and rapid attenuation of RNA viruses. The technique relies on recoding of viral genes by increasing the number of codon pairs that are statistically underrepresented in protein coding genes of the viral host without changing the amino acid sequence of the encoded proteins. Utilization of naturally underrepresented codon pairs reduces protein production of recoded genes and directly causes virus attenuation. As a result, the mutant virus is antigenically identical with the parental virus, but virulence is reduced or absent. Our goal was to determine if a virus with a large double-stranded DNA genome, highly oncogenic Marek's disease virus (MDV), can be attenuated by CPBD. We recoded UL30 that encodes the catalytic subunit of the viral DNA polymerase to minimize (deoptimization), maximize (optimization), or preserve (randomization) the level of overrepresented codon pairs of the MDV host, the chicken. A fully codon pair-deoptimized UL30 mutant could not be recovered in cell culture. The sequence of UL30 was divided into three segments of equal length and we generated a series of mutants with different segments of the UL30 recoded. The codon pair-deoptimized genes, in which two segments of UL30 had been recoded, showed reduced rates of protein production. In cultured cells, the corresponding viruses formed smaller plaques and grew to lower titers compared with parental virus. In contrast, codon pair-optimized and -randomized viruses replicated in vitro with kinetics that were similar to those of the parental virus. Animals that were infected with the partially codon pair-deoptimized virus showed delayed progression of disease and lower mortality rates than codon pair-optimized and parental viruses. These results demonstrate that CPBD of a herpesvirus gene causes attenuation of the recoded virus and that CPBD may be an applicable strategy for attenuation of other large DNA viruses.


Subject(s)
Base Pair Mismatch , Codon/genetics , Herpesvirus 2, Gallid/genetics , Marek Disease/virology , Vaccines, Attenuated/genetics , Virulence , Algorithms , Animals , Base Pair Mismatch/physiology , Cells, Cultured , Chick Embryo , Chickens , Chlorocebus aethiops , Computational Biology/methods , Genes, Viral , HEK293 Cells , HeLa Cells , Herpesvirus 2, Gallid/immunology , Humans , Marek Disease/immunology , Vaccines, Attenuated/metabolism , Vero Cells , Viral Proteins/genetics , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...