Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Front Cell Dev Biol ; 12: 1423936, 2024.
Article in English | MEDLINE | ID: mdl-39324073

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a worldwide health epidemic with a global occurrence of approximately 30%. The pathogenesis of MASLD is a complex, multisystem disorder driven by multiple factors, including genetics, lifestyle, and the environment. Patient heterogeneity presents challenges in developing MASLD therapeutics, creating patient cohorts for clinical trials, and optimizing therapeutic strategies for specific patient cohorts. Implementing pre-clinical experimental models for drug development creates a significant challenge as simple in vitro systems and animal models do not fully recapitulate critical steps in the pathogenesis and the complexity of MASLD progression. To address this, we implemented a precision medicine strategy that couples the use of our liver acinus microphysiology system (LAMPS) constructed with patient-derived primary cells. We investigated the MASLD-associated genetic variant patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 (I148M variant) in primary hepatocytes as it is associated with MASLD progression. We constructed the LAMPS with genotyped wild-type and variant PNPLA3 hepatocytes, together with key non-parenchymal cells, and quantified the reproducibility of the model. We altered media components to mimic blood chemistries, including insulin, glucose, free fatty acids, and immune-activating molecules to reflect normal fasting (NF), early metabolic syndrome (EMS), and late metabolic syndrome (LMS) conditions. Finally, we investigated the response to treatment with resmetirom, an approved drug for metabolic syndrome-associated steatohepatitis (MASH), the progressive form of MASLD. This study, using primary cells, serves as a benchmark for studies using "patient biomimetic twins" constructed with patient induced pluripotent stem cell (iPSC)-derived liver cells using a panel of reproducible metrics. We observed increased steatosis, immune activation, stellate cell activation, and secretion of pro-fibrotic markers in the PNPLA3 GG variant compared to the wild-type CC LAMPS, consistent with the clinical characterization of this variant. We also observed greater resmetirom efficacy in the PNPLA3 wild-type CC LAMPS compared to the GG variant in multiple MASLD metrics, including steatosis, stellate cell activation, and the secretion of pro-fibrotic markers. In conclusion, our study demonstrates the capability of the LAMPS platform for the development of MASLD precision therapeutics, enrichment of patient cohorts for clinical trials, and optimization of therapeutic strategies for patient subgroups with different clinical traits and disease stages.

2.
Hepatology ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190693

ABSTRACT

BACKGROUND AND AIMS: TM6SF2 rs58542926 (E167K) is related to increased prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD). Conflicting mouse study results highlight the need for a human model to understand this mutation's impact. This study aims to create and characterize a reliable human in vitro model to mimic the effects of the TM6SF2-E167K mutation for future studies. APPROACH AND RESULTS: We used gene editing on human human-induced pluripotent stem cells (iPSC) from a healthy individual to create cells with the TM6SF2-E167K mutation. After hepatocyte directed differentiation, we observed decreased TM6SF2 protein expression, increased intracellular lipid droplets and total cholesterol in addition to reduced VLDL secretion. Transcriptomics revealed upregulation of genes involved in lipid, fatty acid, and cholesterol transport, flux, and oxidation. Global lipidomics showed increased lipid classes associated with ER stress, mitochondrial dysfunction, apoptosis, and lipid metabolism. Additionally, the TM6SF2-E167K mutation conferred a pro-inflammatory phenotype with signs of mitochondria and ER stress. Importantly, by facilitating protein folding within the ER of hepatocytes carrying TM6SF2-E167K mutation, VLDL secretion and ER stress markers improved. CONCLUSIONS: Our findings indicate that induced hepatocytes generated from iPSCs carrying the TM6SF2-E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to identify potential clinical targets and highlights the therapeutic potential of targeting protein misfolding to alleviate ER stress and mitigate the detrimental effects of the TM6SF2-E167K mutation on hepatic lipid metabolism.

3.
Stem Cells Int ; 2024: 2385568, 2024.
Article in English | MEDLINE | ID: mdl-39015674

ABSTRACT

Patients with focal segmental glomerulosclerosis (FSGS) who are refractory to drug treatment may present progressive loss of kidney function, leading to chronic kidney disease stage 5 under dialysis treatment. The safety of systemic administration of bone marrow-derived mononuclear cells (BMDMCs) has been shown in different preclinical models of kidney diseases. However, to date, no study has evaluated the safety and biodistribution of BMDMCs after infusion in renal arteries in patients with FSGS. We used a prospective, non-randomized, single-center longitudinal design to investigate this approach. Five patients with refractory FSGS and an estimated glomerular filtration rate (eGFR) between 20 and 40 ml/min/1.73 m2 underwent bone marrow aspiration and received an arterial infusion of autologous BMDMCs (5 × 107) for each kidney. In addition, BMDMCs labeled with technetium-99m (99mTc-BMDMCs) were used to assess the biodistribution by scintigraphy. All patients completed the 270-day follow-up protocol with no serious adverse events. A transient increase in creatinine was observed after the cell therapy, with improvement on day 30. 99mTc-BMDMCs were detected in both kidneys and counts were higher after 2 hr compared with 24 hr. The arterial infusion of BMDMCs in both kidneys of patients with FSGS was considered safe with stable eGFR at the end of follow-up. This trial is registered with NCT02693366.

4.
bioRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712213

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a worldwide health epidemic with a global occurrence of approximately 30%. The pathogenesis of MASLD is a complex, multisystem disorder driven by multiple factors including genetics, lifestyle, and the environment. Patient heterogeneity presents challenges for developing MASLD therapeutics, creation of patient cohorts for clinical trials and optimization of therapeutic strategies for specific patient cohorts. Implementing pre-clinical experimental models for drug development creates a significant challenge as simple in vitro systems and animal models do not fully recapitulate critical steps in the pathogenesis and the complexity of MASLD progression. To address this, we implemented a precision medicine strategy that couples the use of our liver acinus microphysiology system (LAMPS) constructed with patient-derived primary cells. We investigated the MASLD-associated genetic variant PNPLA3 rs738409 (I148M variant) in primary hepatocytes, as it is associated with MASLD progression. We constructed LAMPS with genotyped wild type and variant PNPLA3 hepatocytes together with key non-parenchymal cells and quantified the reproducibility of the model. We altered media components to mimic blood chemistries, including insulin, glucose, free fatty acids, and immune activating molecules to reflect normal fasting (NF), early metabolic syndrome (EMS) and late metabolic syndrome (LMS) conditions. Finally, we investigated the response to treatment with resmetirom, an approved drug for metabolic syndrome-associated steatohepatitis (MASH), the progressive form of MASLD. This study using primary cells serves as a benchmark for studies using patient biomimetic twins constructed with patient iPSC-derived liver cells using a panel of reproducible metrics. We observed increased steatosis, immune activation, stellate cell activation and secretion of pro-fibrotic markers in the PNPLA3 GG variant compared to wild type CC LAMPS, consistent with the clinical characterization of this variant. We also observed greater resmetirom efficacy in PNPLA3 wild type CC LAMPS compared to the GG variant in multiple MASLD metrics including steatosis, stellate cell activation and the secretion of pro-fibrotic markers. In conclusion, our study demonstrates the capability of the LAMPS platform for the development of MASLD precision therapeutics, enrichment of patient cohorts for clinical trials, and optimization of therapeutic strategies for patient subgroups with different clinical traits and disease stages.

5.
bioRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712079

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths, and commonly associated with hepatic fibrosis or cirrhosis. This study aims to establish a rat model mimicking the progression from liver fibrosis to cirrhosis and subsequently to HCC using thioacetamide (TAA). We utilized male Lewis rats, treating them with intra-peritoneal injections of TAA. These rats received bi-weekly injections of either 200 mg/kg TAA or saline (as a control) over a period of 34 weeks. The development of cirrhosis and hepatocarcinogenesis was monitored through histopathological examinations, biochemical markers, and immunohistochemical analyses. Our results demonstrated that chronic TAA administration induced cirrhosis and well-differentiated HCC, characterized by increased fibrosis, altered liver architecture, and enhanced hepatocyte proliferation. Biochemical analyses revealed significant alterations in liver function markers, including elevated alpha-fetoprotein (AFP) levels, without affecting kidney function or causing significant weight loss or mortality in rats. This TAA-induced cirrhosis and HCC rat model successfully replicates the clinical progression of human HCC, including liver function impairment and early-stage liver cancer characteristics. It presents a valuable tool for future research on the mechanisms of antitumor drugs in tumor initiation and development.

6.
Gastro Hep Adv ; 3(1): 67-77, 2024.
Article in English | MEDLINE | ID: mdl-38292457

ABSTRACT

BACKGROUND AND AIMS: Chronic liver injury that results in cirrhosis and end-stage liver disease (ESLD) causes more than 1 million deaths annually worldwide. Although the impact of genetic factors on the severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD) has been previously studied, their contribution to the development of ESLD remains largely unexplored. METHODS: We genotyped 6 MASLD-associated polymorphisms in healthy (n = 123), metabolic dysfunction-associated steatohepatitis (MASH) (n = 145), MASLD-associated ESLD (n = 72), and ALD-associated ESLD (n = 57) cohorts and performed multinomial logistic regression to determine the combined contribution of genetic, demographic, and clinical factors to the progression of ESLD. RESULTS: Distinct sets of factors are associated with the progression to ESLD. The PNPLA3 rs738409:G and TM6SF2 rs58542926:T alleles, body mass index (BMI), age, and female sex were positively associated with progression from a healthy state to MASH. The PNPLA3 rs738409:G allele, age, male sex, and having type 2 diabetes mellitus were positively associated, while BMI was negatively associated with progression from MASH to MASLD-associated ESLD. The PNPLA3 rs738409:G and GCKR rs780094:T alleles, age, and male sex were positively associated, while BMI was negatively associated with progression from a healthy state to ALD-associated ESLD. The findings indicate that the PNPLA3 rs738409:G allele increases susceptibility to ESLD regardless of etiology, the TM6SF2 rs58542926:T allele increases susceptibility to MASH, and the GCKR rs780094:T allele increases susceptibility to ALD-associated ESLD. CONCLUSION: The PNPLA3, TM6SF2, and GCKR minor alleles influence the progression of MASLD-associated or ALD-associated ESLD. Genotyping for these variants in MASLD and ALD patients can enhance risk assessment, prompting early interventions to prevent ESLD.

7.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686209

ABSTRACT

Metabolic-dysfunction-associated steatotic liver disease (MASLD), which affects 30 million people in the US and is anticipated to reach over 100 million by 2030, places a significant financial strain on the healthcare system. There is presently no FDA-approved treatment for MASLD despite its public health significance and financial burden. Understanding the connection between point mutations, liver enzymes, and MASLD is important for comprehending drug toxicity in healthy or diseased individuals. Multiple genetic variations have been linked to MASLD susceptibility through genome-wide association studies (GWAS), either increasing MASLD risk or protecting against it, such as PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438. As the impact of genetic variants on the levels of drug-metabolizing cytochrome P450 (CYP) enzymes in human hepatocytes has not been thoroughly investigated, this study aims to describe the analysis of metabolic functions for selected phase I and phase II liver enzymes in human hepatocytes. For this purpose, fresh isolated primary hepatocytes were obtained from healthy liver donors (n = 126), and liquid chromatography-mass spectrometry (LC-MS) was performed. For the cohorts, participants were classified into minor homozygotes and nonminor homozygotes (major homozygotes + heterozygotes) for five gene polymorphisms. For phase I liver enzymes, we found a significant difference in the activity of CYP1A2 in human hepatocytes carrying MBOAT7 (p = 0.011) and of CYP2C8 in human hepatocytes carrying PNPLA3 (p = 0.004). It was also observed that the activity of CYP2C9 was significantly lower in human hepatocytes carrying HSD17B13 (p = 0.001) minor homozygous compared to nonminor homozygous. No significant difference in activity of CYP2E1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, ECOD, FMO, MAO, AO, and CES2 and in any of the phase II liver enzymes between human hepatocytes carrying genetic variants for PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438 were observed. These findings offer a preliminary assessment of the influence of genetic variations on drug-metabolizing cytochrome P450 (CYP) enzymes in healthy human hepatocytes, which may be useful for future drug discovery investigations.


Subject(s)
Digestive System Diseases , Fatty Liver , Liver Diseases , Humans , Cytochrome P-450 CYP2C8/genetics , Cytochrome P-450 CYP2E1 , Genome-Wide Association Study , Hepatocytes
8.
Organogenesis ; 19(1): 2247576, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37598346

ABSTRACT

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), the most common types of cholestatic liver disease (CLD), result in enterohepatic obstruction, bile acid accumulation, and hepatotoxicity. The mechanisms by which hepatocytes respond to and cope with CLD remain largely unexplored. This study includes the characterization of hepatocytes isolated from explanted livers of patients with PBC and PSC. We examined the expression of hepatocyte-specific genes, intracellular bile acid (BA) levels, and oxidative stress in primary-human-hepatocytes (PHHs) isolated from explanted livers of patients with PBC and PSC and compared them with control normal human hepatocytes. Our findings provide valuable initial insights into the hepatocellular response to cholestasis in CLD and help support the use of PHHs as an experimental tool for these diseases.


Subject(s)
Carcinoma, Hepatocellular , Cholestasis , Liver Neoplasms , Humans , Bile Acids and Salts
9.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187603

ABSTRACT

BACKGROUND AND AIMS: TM6SF2 rs58542926 (E167K) is associated with an increase in the prevalence of Metabolic Disfunction-Associated Steatotic Liver Disease (MASLD). Despite all the investigation related to the role of this variant in lipid metabolism, conflicting results in mouse studies underscore the importance of creating a human model for understanding the TM6SF2 mechanism. Therefore, the aim of this study is to generate a reliable human in vitro model that mimic the effects of the TM6SF2 E167K mutation and can be used for future mechanism studies. APPROACH AND RESULTS: We performed gene editing on human-induced pluripotent stem cells (iPSC) derived from a healthy individual to obtain the cells carrying the TM6SF2 E167K mutation. After hepatic differentiation, a decrease in TM6SF2 protein expression was observed in the mutated-induced hepatocyte. An increase in intracellular lipid droplets and a decrease in the efflux of cholesterol and ApoB100 were also observed. Transcriptomics analysis showed up-regulation of genes related to the transport, flux, and oxidation of lipids, fatty acids, and cholesterol in TM6SF2 E167K cells. Additionally, signs of cellular stress were observed in the ER and mitochondria. CONCLUSIONS: Our findings indicate that induced hepatocytes generated from iPSC carrying the TM6SF2 E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to help in the identification of potential clinical targets and therapies and to understand the mechanism by which the TM6SF2 E167K variant leads to vulnerability to MASLD.

10.
iScience ; 25(12): 105503, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36404924

ABSTRACT

Advances in cellular engineering, as well as gene, and cell therapy, may be used to produce human tissues with programmable genetically enhanced functions designed to model and/or treat specific diseases. Fabrication of synthetic human liver tissue with these programmable functions has not been described. By generating human iPSCs with target gene expression controlled by a guide RNA-directed CRISPR-Cas9 synergistic-activation-mediator, we produced synthetic human liver tissues with programmable functions. Such iPSCs were guide-RNA-treated to enhance expression of the clinically relevant CYP3A4 and UGT1A1 genes, and after hepatocyte-directed differentiation, cells demonstrated enhanced functions compared to those found in primary human hepatocytes. We then generated human liver tissue with these synthetic human iPSC-derived hepatocytes (iHeps) and other non-parenchymal cells demonstrating advanced programmable functions. Fabrication of synthetic human liver tissue with modifiable functional genetic programs may be a useful tool for drug discovery, investigating biology, and potentially creating bioengineered organs with specialized functions.

11.
Semin Liver Dis ; 42(4): 413-422, 2022 11.
Article in English | MEDLINE | ID: mdl-36044927

ABSTRACT

Although the underlying cause may vary across countries and demographic groups, liver disease is a major cause of morbidity and mortality globally. Orthotopic liver transplantation is the only definitive treatment for liver failure but is limited by the lack of donor livers. The development of drugs that prevent the progression of liver disease and the generation of alternative liver constructs for transplantation could help alleviate the burden of liver disease. Bioengineered livers containing human induced pluripotent stem cell (iPSC)-derived liver cells are being utilized to study liver disease and to identify and test potential therapeutics. Moreover, bioengineered livers containing pig hepatocytes and endothelial cells have been shown to function and survive after transplantation into pig models of liver failure, providing preclinical evidence toward future clinical applications. Finally, bioengineered livers containing human iPSC-derived liver cells have been shown to function and survive after transplantation in rodents but require considerable optimization and testing prior to clinical use. In conclusion, bioengineered livers have emerged as a suitable tool for modeling liver diseases and as a promising alternative graft for clinical transplantation. The integration of novel technologies and techniques for the assembly and analysis of bioengineered livers will undoubtedly expand future applications in basic research and clinical transplantation.


Subject(s)
Induced Pluripotent Stem Cells , Liver Diseases , Liver Failure , Humans , Swine , Animals , Endothelial Cells , Hepatocytes , Liver/physiology , Liver Diseases/surgery
12.
Life Sci ; 301: 120615, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35526595

ABSTRACT

The liver, a component of the gastrointestinal tract, is one of the most important organs in the human body. The liver performs over 500 functions to promote physiological homeostasis. In addition, the liver acts as a screen, by metabolizing substances carried by blood coming from the digestive tract before they enter the systemic circulation. This vital function exposes the hepatic tissue to hepatotoxic agents, which can lead to liver damage if the organ's repair and regenerative capacity is insufficient. Several conditions such as persistent exposure to hepatitis C and B viruses, alcohol, and drugs can provoke this disbalance, eventually leading to liver cirrhosis, which is an irreversible and life-threatening condition. This paradigm of irreversibility began to be reconsidered when several studies showed that hepatic fibrosis is potentially reversible after cessation of exposure to the hepatotoxic agent or eradication of the primary disease. In the context of basic research in liver fibrosis and cirrhosis, it is essential to keep in mind that the capacity of the organ to recover spontaneously might be a significant limitation to long-term studies that use experimental models of liver cirrhosis. Here, we review animal models where liver cirrhosis is experimentally induced. We focus on a surgery-based model, i.e., bile duct ligation (BDL), and hepatotoxic drugs such as carbon tetrachloride (CCl4), thioacetamide (TAA), and dimethylnitrosamine (DMN) administrated alone or in association with alcohol, the latter to potentialize the hepatotoxic effect of these agents. Also, we analyze the effects of these approaches, emphasizing the risks, spontaneous reversibility, and outcomes on animal health.


Subject(s)
Liver Cirrhosis, Experimental , Rodentia , Animals , Carbon Tetrachloride/toxicity , Disease Models, Animal , Liver/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis, Experimental/chemically induced , Models, Theoretical , Thioacetamide/toxicity
13.
Hepatol Commun ; 6(7): 1561-1573, 2022 07.
Article in English | MEDLINE | ID: mdl-35289126

ABSTRACT

The initial creation of human-induced pluripotent stem cells (iPSCs) set the foundation for the future of regenerative medicine. Human iPSCs can be differentiated into a variety of cell types in order to study normal and pathological molecular mechanisms. Currently, there are well-defined protocols for the differentiation, characterization, and establishment of functionality in human iPSC-derived hepatocytes (iHep) and iPSC-derived cholangiocytes (iCho). Electrophysiological study on chloride ion efflux channel activity in iHep and iCho cells has not been previously reported. We generated iHep and iCho cells and characterized them based on hepatocyte-specific and cholangiocyte-specific markers. The relevant transmembrane channels were selected: cystic fibrosis transmembrane conductance regulator, leucine rich repeat-containing 8 subunit A, and transmembrane member 16 subunit A. To measure the activity in these channels, we used whole-cell patch-clamp techniques with a standard intracellular and extracellular solution. Our iHep and iCho cells demonstrated definitive activity in the selected transmembrane channels, and this approach may become an important tool for investigating human liver biology of cholestatic diseases.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation/physiology , Epithelial Cells , Hepatocytes , Humans , Liver
14.
Biomater Adv ; 133: 112642, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35034821

ABSTRACT

Organ decellularization is one of the most promising approaches of tissue engineering to overcome the shortage of organs available for transplantation. However, there are key hurdles that still hinder its clinical application, and the lack of hemocompatibility of decellularized materials is a central one. In this work, we demonstrate that Custodiol (HTK solution), a common solution used in organ transplantation, increased the hemocompatibility of acellular scaffolds obtained from rat livers. We showed that Custodiol inhibited ex vivo, in vitro, and in vivo blood coagulation to such extent that allowed successful transplantation of whole-liver scaffolds into recipient animals. Scaffolds previously perfused with Custodiol showed no signs of platelet aggregation and maintained in vitro and in vivo cellular compatibility. Proteomic analysis revealed that proteins related to platelet aggregation were reduced in Custodiol samples while control samples were enriched with thrombogenicity-related proteins. We also identified distinct components that could potentially be involved with this anti-thrombogenic effect and thus require further investigation. Therefore, Custodiol perfusion emerge as a promising strategy to reduce the thrombogenicity of decellularized biomaterials and could benefit several applications of whole-organ tissue engineering.


Subject(s)
Proteomics , Tissue Engineering , Animals , Glucose , Liver , Mannitol , Perfusion , Potassium Chloride , Procaine , Rats
15.
Cells Tissues Organs ; 211(4): 385-394, 2022.
Article in English | MEDLINE | ID: mdl-33040059

ABSTRACT

There are few existing methods for shortening the decellularization period for a human-sized whole-liver scaffold. Here, we describe a protocol that enables effective decellularization of the liver obtained from pigs weigh 120 ± 4.2 kg within 72 h. Porcine livers (approx. 1.5 kg) were decellularized for 3 days using a combination of chemical and enzymatic decellularization agents. After trypsin, sodium deoxycholate, and Triton X-100 perfusion, the porcine livers were completely translucent. Our protocol was efficient to promote cell removal, the preservation of extracellular matrix (ECM) components, and vascular tree integrity. In conclusion, our protocol is efficient to promote human-sized whole-liver scaffold decellularization and thus useful to generate bioengineered livers to overcome the shortage of organs.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Animals , Extracellular Matrix , Humans , Liver , Perfusion , Swine , Tissue Engineering/methods
16.
J Pers Med ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208839

ABSTRACT

As diet and lifestyle have changed, fatty liver disease (FLD) has become more and more prevalent. Many genetic risk factors, such as variants of PNPLA3, TM6SF2, GCKR, and MBOAT7, have previously been uncovered via genome wide association studies (GWAS) to be associated with FLD. In 2018, a genetic variant (rs72613567, T > TA) of hydroxysteroid 17-ß dehydrogenase family 13 (HSD17B13) was first associated with a lower risk of developing alcoholic liver disease and non-alcoholic fatty liver disease (NAFLD) in minor allele carriers. Other HSD17B13 variants were also later linked with either lower inflammation scores among NAFLD patients or protection against NAFLD (rs6834314, A > G and rs9992651, G > A) respectively. HSD17B13 is a lipid droplet-associated protein, but its function is still ambiguous. Compared to the other genetic variants that increase risk for FLD, HSD17B13 variants serve a protective role, making this gene a potential therapeutic target. However, the mechanism by which these variants reduce the risk of developing FLD is still unclear. Because studies in cell lines and mouse models have produced conflicting results, human liver tissue modeling using induced pluripotent stem cells may be the best way to move forward and solve this mystery.

17.
Organogenesis ; 17(3-4): 117-125, 2021 10 02.
Article in English | MEDLINE | ID: mdl-35114888

ABSTRACT

The use of primary human hepatocytes has been hampered by limited availability of adequate numbers of fresh and viable cells due to the ongoing shortage of liver donors. Thus, there is no surplus of healthy organs from which freshly isolated cells can be prepared when needed. However, primary hepatocytes can be successfully isolated from explanted liver specimens obtained from patients receiving orthotopic liver transplantation for decompensated liver cirrhosis or for metabolic liver disease without end-stage liver disease and are a valuable resource for the pharmaceutical industry research. This review focuses on the isolation, characterization and cryopreservation of hepatocytes derived from therapeutically resected livers with various hepatic diseases.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Drug Evaluation, Preclinical , End Stage Liver Disease/metabolism , End Stage Liver Disease/surgery , Hepatocytes/metabolism , Humans , Liver
18.
Organogenesis ; 17(3-4): 126-135, 2021 10 02.
Article in English | MEDLINE | ID: mdl-35114889

ABSTRACT

The prevalence of end-stage liver disease (ESLD) in the US is increasing at an alarming rate. It can be caused by several factors; however, one of the most common routes begins with nonalcoholic fatty liver disease (NAFLD). ESLD is diagnosed by the presence of irreversible damage to the liver. Currently, the only definitive treatment for ESLD is orthotopic liver transplantation (OLT). Nevertheless, OLT is limited due to a shortage of donor livers. Several promising alternative treatment options are under investigation. Researchers have focused on the effect of liver-enriched transcription factors (LETFs) on disease progression. Specifically, hepatocyte nuclear factor 4-alpha (HNF4α) has been reported to reset the liver transcription network and possibly play a role in the regression of fibrosis and cirrhosis. In this review, we describe the function of HNF4α, along with its regulation at various levels. In addition, we summarize the role of HNF4α in ESLD and its potential as a therapeutic target in the treatment of ESLD.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Non-alcoholic Fatty Liver Disease , End Stage Liver Disease/therapy , Hepatocyte Nuclear Factor 4/genetics , Humans , Liver , Non-alcoholic Fatty Liver Disease/therapy
19.
Organogenesis ; 16(3): 95-112, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32799604

ABSTRACT

Acellular liver scaffolds (ALS) have arisen as potential candidates for transplantation. Until now, all reports involving ALS transplantation failed in surgical method descriptions and do not offer support to scientists to reproduce the procedures used in experimental microsurgery to make the results comparable to literature. To overcome the lack of detail information, we described surgical steps details to perform heterotopic and partial orthotopic surgical models to promote ALS transplantation. After preservation and vessel cannulation steps, the liver grafts were decellularized. In addition, ex vivo blood perfusion tests were performed to obtain a successful anticoagulation treatment prior in vivo transplantation. Then, methods of partial liver resection, combination of hand-suture and cuff techniques to complete end-to-end anastomosis between the scaffold and the recipient animal were performed. These procedures which take 30-60 min and were efficient to allow acellular liver scaffold viability and recellularization of different types of cell post-surgery. In conclusion, our methods are practical and simple promising approach that provides the opportunity to investigate ways to achieve sufficient liver function post-transplantation in vivo.


Subject(s)
Liver Transplantation/methods , Liver/surgery , Microsurgery/methods , Tissue Engineering/methods , Tissue Scaffolds , Animals , Extracellular Matrix , Female , Male , Models, Anatomic , Rats , Rats, Wistar , Transplantation, Heterotopic
20.
Stem Cell Res Ther ; 11(1): 167, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32357905

ABSTRACT

BACKGROUND: Despite recent advances in understanding its pathophysiology and development of novel therapies, asthma remains a serious public health issue worldwide. Combination therapy with inhaled corticosteroids and long-acting ß2-adrenoceptor agonists results in disease control for many patients, but those who exhibit severe asthma are often unresponsive to conventional treatment, experiencing worse quality of life, frequent exacerbations, and increasing healthcare costs. Bone marrow-derived mononuclear cell (BMMC) transplantation has been shown to reduce airway inflammation and remodeling and improve lung function in experimental models of allergic asthma. METHODS: This is a case series of three patients who presented severe asthma, unresponsive to conventional therapy and omalizumab. They received a single intravenous dose of autologous BMMCs (2 × 107) and were periodically evaluated for 1 year after the procedure. Endpoint assessments included physical examination, quality of life questionnaires, imaging (computed tomography, single-photon emission computed tomography, and ventilation/perfusion scan), lung function tests, and a 6-min walk test. RESULTS: All patients completed the follow-up protocol. No serious adverse events attributable to BMMC transplantation were observed during or after the procedure. Lung function remained stable throughout. A slight increase in ventilation of the right lung was observed on day 120 after BMMC transplantation in one patient. All three patients reported improvement in quality of life in the early post-procedure course. CONCLUSIONS: This paper described for the first time the effects of BMMC therapy in patients with severe asthma, providing a basis for subsequent trials to assess the efficacy of this therapy.


Subject(s)
Asthma , Quality of Life , Adrenal Cortex Hormones , Asthma/therapy , Bone Marrow , Bone Marrow Transplantation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL