Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(8): e0307909, 2024.
Article in English | MEDLINE | ID: mdl-39159201

ABSTRACT

Foxtail millet (FM) and green banana (GB) are rich in health-promoting nutrients and bioactive substances, like antioxidants, dietary fibers, and various essential macro and micronutrients. Utilizing GB and FM flour as prebiotics is attributed to their ability to support gut health and offer multiple health benefits. The present study aimed to evaluate the impact of incorporating 10% GB flour (GBF) and different proportions (10-40%) of FM flour (FMF) on the prebiotic potential, antioxidant, nutrient, color, cooking quality, water activity and sensory attributes of noodles. The prebiotic potential, antioxidant, and nutrient of the produced noodles were significantly improved by increasing the levels of FMF. Sensorial evaluation revealed that noodles containing 30% FMF and 10% GBF attained comparable scores to the control sample. Furthermore, the formulated noodles exhibited significantly (p < 0.05) higher levels of protein, essential minerals (such as iron, magnesium, and manganese), dietary fiber (9.37 to 12.71 g/100 g), total phenolic compounds (17.81 to 36.35 mg GA eq./100 g), and total antioxidants (172.57 to 274.94 mg AA eq./100 g) compared to the control. The enriched noodles also demonstrated substantially (p < 0.05) increased antioxidant capacity, as evidenced by enhanced DPPH and FRAP activities, when compared to the control noodles. Overall, the incorporation of 30% FMF and 10% GBF led to a noteworthy improvement in the nutritional and antioxidant qualities of the noodles, as well as the prebiotic potential of the noodles with regard to L. plantarum, L. rhamnosus, and L. acidophilus. The implementation of this enrichment strategy has the potential to confer a multitude of health advantages.


Subject(s)
Antioxidants , Flour , Musa , Nutritive Value , Prebiotics , Antioxidants/analysis , Prebiotics/analysis , Flour/analysis , Musa/chemistry , Dietary Fiber/analysis , Millets/chemistry , Humans
2.
Heliyon ; 9(6): e17176, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37389050

ABSTRACT

Patients with celiac disease and those who are gluten intolerant have a need for gluten-free bakery items but developing them is a challenge for technologists and dietitians. Foxtail millets are naturally gluten-free and nutrient-dense grains. Herein, CMC-modified foxtail millet biscuits (CFMBs) were prepared using 0.01%, 0.05%, and 0.1% of CMC hydrocolloids with foxtail millet flour. The effects of CFMBs on the physicochemical properties, sensory, and morphology were investigated and compared with wheat (WB-100) and foxtail millet (FMB-100) products. CFMBs were thicker, had a larger specific volume, and had a lower diameter and spread ratio than FMB-100. CFMB-0.1 exhibited higher moisture content, higher water activity, and lower fat content than FMB-100 and WB-100. The hardness of CFMB-0.1 (35.08 ± 0.26 N) was close to WB-100 (37.75 ± 0.104 N) but higher than FM-100 (21.61 ± 0.064 N). The scanning electron microscope (SEM) study indicated that incorporating CMC influenced the morphology and microstructure of CFMBs. Skilled panelists gave WB-100 and CFMB-0.1 the highest sensory ratings and FMB-100 the lowest due to their color, appearance, flavor, and overall acceptability. Finally, CMC may be easily included in FMB manufacturing and supported like gluten in the food sector to suit the nutritional demands of customers.

3.
Heliyon ; 8(10): e11186, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36339997

ABSTRACT

The nutritional and phytochemical content of foxtail millet (Cetaria italica) makes it a viable food grain. In this study, we looked at foxtail millet in Bangladesh and analyzed its nutritional value, functional and physical characteristics. In addition, methanol, ethanol, and acetone: water: acetic acid (70: 29.50: 0.50) extracts of foxtail millet flour (FMF) were analyzed for their antioxidant properties (total phenolic and flavonoid content, total antioxidant capacity, ferric reducing antioxidant power (FRAP) assay, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity). According to this study, foxtail millet has favorable physiological and functional properties. FMF had protein at 11.65 ± 0.45 g/100 g, fat at 3.48 ± 0.04 g/100 g, carbohydrates at 75.33 ± 0.53 g/100 g, and crude fiber at 2.21 ± 0.03 g/100 g. Calcium was found at 47 ± 0.48 mg/100 g, iron at 4.59 ± 0.14 mg/100 g, potassium at 393 ± 15.87, sodium at 27.4 ± 1.21, magnesium at 45.40 ± 2.22, manganese at 0.71 ± 0.02, copper at 0.58 ± 0.04 and zinc at 2.30 ± 0.18 mg/100 g. The total flavonoid content (TFC) of the methanolic extract (68.26 ± 1.51 mg quercetin equivalents (QE)/100 g) was significantly (p < 0.05) higher than the extract of acetone: water: acetic acid. Total antioxidant capacity (TAC) (169.40 ± 3.45 mg ascorbic acid equivalents (AAE)/100 g) and total phenolic content (TPC) (51.35 ± 1.35 mg gallic acid equivalents (GAE)/100 g) of the methanolic extracts were significantly (p < 0.05) higher than others. The ascending order of DPPH free radical scavenging activity of FMF extract is as follows: acetone: acetic acid: water < ethanol < methanol. In the ferric reducing antioxidant power (FRAP) test, the reducing power of FMF extracts increased with the rise in sample concentration. Foxtail millet has potential as a functional food that could influence rural residents' diets and health.

4.
Heliyon ; 7(5): e06974, 2021 May.
Article in English | MEDLINE | ID: mdl-34027177

ABSTRACT

Poor weaning practice and malnutrition among under 5 (yrs) children are still major public health issues in Bangladesh. This study aimed to develop a cheap and nutritious weaning food for the children of Bangladesh. For this purpose, three weaning formulations of Q1, Q2, and Q3 with different ratios of germinated wheat, germinated mung-bean, and soya-bean, and a constant amount of sweet potato, sugar, salt, and milk flavor were processed and evaluated. The prepared formulations were investigated for proximate composition and sensory evaluation and compared with six commercial weaning food products. The proximate composition values indicated that the fat content of formulated foods ranged between 09.29% and 11.40%. The carbohydrate content was ranged between 52.80% and 61.20%, which was low compared with commercial ones. The protein content of the formulated foods was 20.33%-27.70%, and that was approximately two times more than available commercial foods. The energy content was also more than locally available commercial weaning foods, which were 411.40 ± 1.51 kcal to 419.30 ± 1.12 kcal. Sample Q2 had an 8.4 acceptance score in sensory analysis of a 9-point hedonic scale scorecard, which made it more acceptable than the other two samples. The values of mineral elements (Na, K, Fe) were similar to all analyzed varieties of commercial weaning foods. This nutrient-enriched weaning food will easily be affordable for the people of developing countries like Bangladesh. The results showed that the formulated weaning food had the desired characteristics of a weaning food; hence, it could decrease malnutrition in children.

5.
Food Sci Nutr ; 6(3): 549-556, 2018 May.
Article in English | MEDLINE | ID: mdl-29876105

ABSTRACT

The research study was conducted to evaluate the effect of soy flour on functional, nutritional, and sensory properties of mushroom-moringa-supplemented soup which could be used as a protein-supplemented ready-to-eat food. In this study, corn flour was supplemented with soy flour at different levels such as 20% (T4), 15% (T3), 10% (T2), and 5% (T1), and without soy flour was kept as control (T0). Fixed amount of mushroom and moringa leaf powder was added in all soup powders. Soup powders were analyzed for functional, nutritional, and sensory parameters. Bulk density (0.82-0.74 g/ml), dispersibility (82.1%-75.9%), pH (6.17-6.13), swelling capacity (3.98-3.65 ml/g), and viscosity were decreased, while water absorption capacity (70%-94%) was increased with increasing of soy flour percentages. Protein content of all the treatment groups increased from 10.66% to 19.97% along with a significant increased in fat (1.43%-6.97%), fiber (1.10%-2.30%), ash (15.77%-16.40%), and energy value (328.38-353.21 kcal/100 g) while decreased in moisture and carbohydrate content. On sensory evaluation, soup powders with 10% (T2) level of soy flour incorporation had highest scores for all the sensory attributes evaluated. Based on these results, it can be concluded that soy flour has effect on functional, nutritional, and sensory properties of soup powders and 10% supplementation of soy flour is suitable for ready-to-eat soup formulation. Besides these, use of mushroom and moringa leaf may also increase its nutritional value. Soup developed in this way may be sufficient to meet day-to-day nutritional requirements as a supplement.

6.
Food Sci Nutr ; 5(4): 911-920, 2017 07.
Article in English | MEDLINE | ID: mdl-28748080

ABSTRACT

The research study was conducted to develop a healthy vegetables soup powder supplemented with soy flour, mushroom, moringa leaf and compare its nutritional facts with locally available soup powders. Proximate analysis and sensory evaluation were done by standard method. In this study, moisture, ash, protein, fat, fiber, carbohydrate, and energy content were ranged from 2.83% to 5.46%, 9.39% to 16.48%, 6.92% to 16.05%, 4.22% to 6.39%, 0.22% to 1.61%, 58.81% to 75.41%, and 337.42 to 386.72 kcal/100 g, respectively. Highest content of vitamin D, minerals, protein, and fiber and lowest content of moisture, fat, and carbohydrate were found in the presently developed soy-mushroom-moringa soup powder compare to locally available soup powders. Vitamin C was also found significantly higher than locally available soup powders S1, S2, and S3. Heavy metals were not found in any of the soup powders. On the sensory and microbiological point of view, the presently developed soup powder was found highly acceptable up to 6 months. So, the developed soy-mushroom-moringa soup powder is nutritionally superior to locally available soup powders and sufficient to meet day-to-day nutritional requirements as a supplement.

7.
Food Sci Nutr ; 3(5): 363-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26405522

ABSTRACT

The research study was conducted to evaluate the quality characteristics of soy-mushroom-enriched biscuits which could be used as a protein supplemented cereal snack food. In this study, wheat flour was replaced with soy flour at different levels that is 20% (T3), 15% (T2), and 10% (T1) and without soy flour was kept as control (To). Mushroom was added in both biscuits. Biscuits were analyzed for chemical and sensory parameters. Protein content of soy flour-supplemented biscuits increased from 11.07% to 17.86% as compared to control along with a significant increased in fat (17.36-20.89%), fiber (0.48-0.92%), iron (1.56-1.99 mg/100 g), and energy value (463-485 Kcal/g). Ash content also increased but not significantly. Results from chemical analyses and organoleptic evaluation indicate that good quality biscuits can be prepared by substituting wheat flour with 15% soy flour and addition of mushroom powders may affect the backing quality. Protein Energy Malnutrition (PEM) of the Bangladeshi population can be reduced through the development of biscuits in this way.

SELECTION OF CITATIONS
SEARCH DETAIL