Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091729

ABSTRACT

Krabbe disease (Kd) is a lysosomal storage disorder (LSD) caused by the deficiency of the lysosomal galactosylceramidase (GALC) which cleaves the myelin enriched lipid galactosylceramide (GalCer). Accumulated GalCer is catabolized into the cytotoxic lipid psychosine that causes myelinating cells death and demyelination which recruits microglia/macrophages that fail to digest myelin debris and become globoid cells. Here, to understand the pathological mechanisms of Kd, we used induced pluripotent stem cells (iPSCs) from Kd patients to produce myelinating organoids and microglia. We show that Kd organoids have no obvious defects in neurogenesis, astrogenesis, and oligodendrogenesis but manifest early myelination defects. Specifically, Kd organoids showed shorter but a similar number of myelin internodes than Controls at the peak of myelination and a reduced number and shorter internodes at a later time point. Interestingly, myelin is affected in the absence of autophagy and mTOR pathway dysregulation, suggesting lack of lysosomal dysfunction which makes this organoid model a very valuable tool to study the early events that drive demyelination in Kd. Kd iPSC-derived microglia show a marginal rate of globoid cell formation under normal culture conditions that is drastically increased upon GalCer feeding. Under normal culture conditions, Kd microglia show a minor LAMP1 content decrease and a slight increase in the autophagy protein LC3B. Upon GalCer feeding, Kd cells show accumulation of autophagy proteins and strong LAMP1 reduction that at a later time point are reverted showing the compensatory capabilities of globoid cells. Altogether, this supports the value of our cultures as tools to study the mechanisms that drive globoid cell formation and the compensatory mechanism in play to overcome GalCer accumulation in Kd.

2.
Glia ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215540

ABSTRACT

Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2-null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2-associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.

3.
Glia ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989661

ABSTRACT

Rapid nerve conduction in the peripheral nervous system (PNS) is facilitated by the multilamellar myelin sheath encasing many axons of peripheral nerves. Charcot-Marie-Tooth type 1A (CMT1A), and hereditary neuropathy with liability to pressure palsy (HNPP) are common demyelinating inherited peripheral neuropathies and are caused by mutations in the peripheral myelin protein 22 (PMP22) gene. Duplication of PMP22 leads to its overexpression and causes CMT1A, while its deletion results in PMP22 under expression and causes HNPP. Here, we investigated novel targets for modulating the protein level of PMP22 in HNPP. We found that genetic attenuation of the transcriptional coactivator Yap in Schwann cells reduces p-TAZ levels, increased TAZ activity, and increases PMP22 in peripheral nerves. Based on these findings, we ablated Yap alleles in Schwann cells of the Pmp22-haploinsufficient mouse model of HNPP and identified fewer tomacula on morphological assessment and improved nerve conduction in peripheral nerves. These findings suggest YAP modulation may be a new avenue for treatment of HNPP.

4.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562812

ABSTRACT

Schwann cells are critical for the proper development and function of the peripheral nervous system, where they form a mutually beneficial relationship with axons. Past studies have highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this work, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in early and severe defects in peripheral nerve development. Using a proteomic approach in vitro, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on the presence of axonal signals. Furthermore, we show in vivo that loss of Phb2 in mouse Schwann cells causes ineffective proliferation and dysregulation of transcription factors EGR2 (KROX20), POU3F1 (OCT6) and POU3F2 (BRN2) that are necessary for proper Schwann cell maturation. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the development defect seen in mice lacking Schwann cell Phb2. This work develops our understanding of Schwann cell biology, revealing that Phb2 may directly or indirectly modulate the timely expression of transcription factors necessary for proper peripheral nervous system development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.

5.
Article in English | MEDLINE | ID: mdl-38503507

ABSTRACT

Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.


Subject(s)
Axons , Myelin Sheath , Schwann Cells , Schwann Cells/metabolism , Schwann Cells/physiology , Myelin Sheath/metabolism , Myelin Sheath/physiology , Animals , Humans , Axons/physiology , Axons/metabolism , Signal Transduction , Peripheral Nervous System , Extracellular Matrix/metabolism , Cell Differentiation
6.
IBRO Neurosci Rep ; 14: 429-434, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37215748

ABSTRACT

Background: Lithium has a wide range of neuroprotective actions, has been effective in Parkinson's disease (PD) animal models and may account for the decreased risk of PD in smokers. Methods: This open-label pilot clinical trial randomized 16 PD patients to "high-dose" (n = 5, lithium carbonate titrated to achieve serum level of 0.4-0.5 mmol/L), "medium-dose" (n = 6, 45 mg/day lithium aspartate) or "low-dose" (n = 5, 15 mg/day lithium aspartate) lithium therapy for 24-weeks. Peripheral blood mononuclear cell (PBMC) mRNA expression of nuclear receptor-related-1 (Nurr1) and superoxide dismutase-1 (SOD1) were assessed by qPCR in addition to other PD therapeutic targets. Two patients from each group received multi-shell diffusion MRI scans to assess for free water (FW) changes in the dorsomedial nucleus of the thalamus and nucleus basalis of Meynert, which reflect cognitive decline in PD, and the posterior substantia nigra, which reflects motor decline in PD. Results: Two of the six patients receiving medium-dose lithium therapy withdrew due to side effects. Medium-dose lithium therapy was associated with the greatest numerical increases in PBMC Nurr1 and SOD1 expression (679% and 127%, respectively). Also, medium-dose lithium therapy was the only dosage associated with mean numerical decreases in brain FW in all three regions of interest, which is the opposite of the known longitudinal FW changes in PD. Conclusion: Medium-dose lithium aspartate therapy was associated with engagement of blood-based therapeutic targets and improvements in MRI disease-progression biomarkers but was poorly tolerated in 33% of patients. Further PD clinical research is merited examining lithium's tolerability, effects on biomarkers and potential disease-modifying effects.

7.
PLoS Genet ; 18(11): e1010477, 2022 11.
Article in English | MEDLINE | ID: mdl-36350884

ABSTRACT

Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Mice , Animals , Charcot-Marie-Tooth Disease/genetics , Myelin Sheath/genetics , Myelin Sheath/metabolism , Axons/metabolism , Neuroglia , Mice, Knockout , Disease Models, Animal , Communication
8.
PLoS Biol ; 20(7): e3001661, 2022 07.
Article in English | MEDLINE | ID: mdl-35789331

ABSTRACT

Krabbe disease is caused by a deficiency of the lysosomal galactosylceramidase (GALC) enzyme, which results in the accumulation of galactosylceramide (GalCer) and psychosine. In Krabbe disease, the brunt of demyelination and neurodegeneration is believed to result from the dysfunction of myelinating glia. Recent studies have shown that neuronal axons are both structurally and functionally compromised in Krabbe disease, even before demyelination, suggesting a possible neuron-autonomous role of GALC. Using a novel neuron-specific Galc knockout (CKO) model, we show that neuronal Galc deletion is sufficient to cause growth and motor coordination defects and inflammatory gliosis in mice. Furthermore, psychosine accumulates significantly in the nervous system of neuron-specific Galc-CKO. Confocal and electron microscopic analyses show profound neuro-axonal degeneration with a mild effect on myelin structure. Thus, we prove for the first time that neuronal GALC is essential to maintain and protect neuronal function independently of myelin and may directly contribute to the pathogenesis of Krabbe disease.


Subject(s)
Galactosylceramidase , Leukodystrophy, Globoid Cell , Animals , Disease Models, Animal , Galactosylceramidase/genetics , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/pathology , Mice , Neurons/pathology , Psychosine
9.
Front Mol Neurosci ; 15: 881571, 2022.
Article in English | MEDLINE | ID: mdl-35592111

ABSTRACT

Background: Numerous studies have indicated that myelination is the result of the interplay between extracellular signals and an intricate network of transcription factors. Yet, the identification and characterization of the full repertoire of transcription factors that modulate myelination are still incomplete. CC2D1B is a member of the Lgd/CC2D1 family of proteins highly expressed in myelinating cells in the central and peripheral nervous systems. In addition, the absence of CC2D1B limits myelin formation in vitro. Here we propose to delineate the function of CC2D1B in myelinating cells during developmental myelination in vivo in the central and peripheral nervous systems. Methods: We used a Cc2d1b constitutive knockout mouse model and then performed morphological analyses on semithin sections of sciatic nerves and electron micrographs of optic nerves. We also performed immunohistological studies on coronal brain sections. All analyses were performed at 30 days of age. Results: In the peripheral nervous system, animals ablated for Cc2d1b did not show any myelin thickness difference compared to control animals. In the central nervous system, immunohistological studies did not show any difference in the number of oligodendrocytes or the level of myelin proteins in the cortex, corpus callosum, and striatum. However, optic nerves showed a hypomyelination (0.844 ± 0.022) compared to control animals (0.832 ± 0.016) of large diameter myelinated fibers. Conclusions: We found that CC2D1B plays a role in developmental myelination in the central nervous system. These results suggest that CC2D1B could contribute to gene regulation during oligodendrocytes myelination in optic nerves.

10.
iScience ; 25(4): 104132, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35434551

ABSTRACT

Cells elaborate transcriptional programs in response to external signals. In the peripheral nerves, Schwann cells (SC) sort axons of given caliber and start the process of wrapping their membrane around them. We identify Actin-like protein 6a (ACTL6a), part of SWI/SNF chromatin remodeling complex, as critical for the integration of axonal caliber recognition with the transcriptional program of myelination. Nuclear levels of ACTL6A in SC are increased by contact with large caliber axons or nanofibers, and result in the eviction of repressive histone marks to facilitate myelination. Without Actl6a the SC are unable to coordinate caliber recognition and myelin production. Peripheral nerves in knockout mice display defective radial sorting, hypo-myelination of large caliber axons, and redundant myelin around small caliber axons, resulting in a clinical motor phenotype. Overall, this suggests that ACTL6A is a key component of the machinery integrating external signals for proper myelination of the peripheral nerve.

SELECTION OF CITATIONS
SEARCH DETAIL