Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Genet ; 24(1): 125-136, 2023.
Article in English | MEDLINE | ID: mdl-36694805

ABSTRACT

There are only about 7,100 adolescent and adult cheetahs (Acinonyx jubatus) remaining in the wild. With the majority occurring outside protected areas, their numbers are rapidly declining. Evidence-based conservation measures are essential for the survival of this species. Genetic data is routinely used to inform conservation strategies, e.g., by establishing conservation units (CU). A commonly used marker in conservation genetics is mitochondrial DNA (mtDNA). Here, we investigated the cheetah's phylogeography using a large-scale mtDNA data set to refine subspecies distributions and better assign individuals to CUs. Our dataset mostly consisted of historic samples to cover the cheetah's whole range as the species has been extinct in most of its former distribution. While our genetic data largely agree with geography-based subspecies assignments, several geographic regions show conflicting mtDNA signals. Our analyses support previous findings that evolutionary forces such as incomplete lineage sorting or mitochondrial capture likely confound the mitochondrial phylogeography of this species, especially in East and, to some extent, in Northeast Africa. We caution that subspecies assignments solely based on mtDNA should be treated carefully and argue for an additional standardized nuclear single nucleotide polymorphism (SNP) marker set for subspecies identification and monitoring. However, the detection of the A. j. soemmeringii specific haplogroup by a newly designed Amplification-Refractory Mutation System (ARMS) can already provide support for conservation measures. Supplementary Information: The online version contains supplementary material available at 10.1007/s10592-022-01483-1.

2.
Am J Primatol ; 85(1): e23453, 2023 01.
Article in English | MEDLINE | ID: mdl-36468411

ABSTRACT

In tropical forests, anthropogenic activities are major drivers of the destruction and degradation of natural habitats, causing severe biodiversity loss. African colobine monkeys (Colobinae) are mainly folivore and strictly arboreal primates that require large forests to subsist, being among the most vulnerable of all nonhuman primates. The Western red colobus Piliocolobus badius and the King colobus Colobus polykomos inhabit highly fragmented West African forests, including the Cantanhez Forests National Park (CFNP) in Guinea-Bissau. Both species are also found in the largest and best-preserved West African forest-the Taï National Park (TNP) in Ivory Coast. Colobine monkeys are hunted for bushmeat in both protected areas, but these exhibit contrasting levels of forest fragmentation, thus offering an excellent opportunity to investigate the importance of well-preserved forests for the maintenance of evolutionary potential in these arboreal primates. We estimated genetic diversity, population structure, and demographic history by using microsatellite loci and mitochondrial DNA. We then compared the genetic patterns of the colobines from TNP with the ones previously obtained for CFNP and found contrasting genetic patterns. Contrary to the colobines from CFNP that showed very low genetic diversity and a strong population decline, the populations in TNP still maintain high levels of genetic diversity and we found no clear signal of population decrease in Western red colobus and a limited decrease in King colobus. These results suggest larger and historically more stable populations in TNP compared to CFNP. We cannot exclude the possibility that the demographic effects resulting from the recent increase of bushmeat hunting are not yet detectable in TNP using genetic data. Nevertheless, the fact that the TNP colobus populations are highly genetically diverse and maintain large effective population sizes suggests that well-preserved forests are crucial for the maintenance of populations, species, and probably for the evolutionary potential in colobines.


Subject(s)
Colobinae , Colobus , Animals , Colobus/genetics , Colobinae/genetics , Forests , Biological Evolution , Trees
3.
Mol Ecol ; 31(16): 4208-4223, 2022 08.
Article in English | MEDLINE | ID: mdl-35748392

ABSTRACT

We live in a world characterized by biodiversity loss and global environmental change. The extinction of large carnivores can have ramifying effects on ecosystems like an uncontrolled increase in wild herbivores, which in turn can have knock-on impacts on vegetation regeneration and communities. Cheetahs (Acinonyx jubatus) serve important ecosystem functions as apex predators; yet, they are quickly heading towards an uncertain future. Threatened by habitat loss, human-wildlife conflict and illegal trafficking, there are only approximately 7100 individuals remaining in nature. We present the most comprehensive genome-wide analysis of cheetah phylogeography and conservation genomics to date, assembling samples from nearly the entire current and past species' range. We show that their phylogeography is more complex than previously thought, and that East African cheetahs (A. j. raineyi) are genetically distinct from Southern African individuals (A. j. jubatus), warranting their recognition as a distinct subspecies. We found strong genetic differentiation between all classically recognized subspecies, thus refuting earlier findings that cheetahs show only little differentiation. The strongest differentiation was observed between the Asiatic and all the African subspecies. We detected high inbreeding in the Critically Endangered Iranian (A. j. venaticus) and North-western (A. j. hecki) subspecies, and show that overall cheetahs, along with snow leopards, have the lowest genome-wide heterozygosity of all the big cats. This further emphasizes the cheetah's perilous conservation status. Our results provide novel and important information on cheetah phylogeography that can support evidence-based conservation policy decisions to help protect this species. This is especially relevant in light of ongoing and proposed translocations across subspecies boundaries, and the increasing threats of illegal trafficking.


Subject(s)
Acinonyx , Acinonyx/genetics , Animals , Ecosystem , Genome , Genomics , Humans , Iran
4.
Genes (Basel) ; 12(9)2021 09 20.
Article in English | MEDLINE | ID: mdl-34573431

ABSTRACT

In mammals, the zona pellucida glycoprotein 3 (ZP3) is considered a primary sperm receptor of the oocyte and is hypothesized to be involved in reproductive isolation. We investigated patterns of diversity and selection in the putative sperm-binding region (pSBR) of mouse ZP3 across Cricetidae and Murinae, two hyperdiverse taxonomic groups within muroid rodents. In murines, the pSBR is fairly conserved, in particular the serine-rich stretch containing the glycosylation sites proposed as essential for sperm binding. In contrast, cricetid amino acid sequences of the pSBR were much more variable and the serine-rich motif, typical of murines, was generally substantially modified. Overall, our results suggest a general lack of species specificity of the pSBR across the two muroid families. We document statistical evidence of positive selection acting on exons 6 and 7 of ZP3 and identified several amino acid sites that are likely targets of selection, with most positively selected sites falling within or adjacent to the pSBR.


Subject(s)
Arvicolinae/genetics , Murinae/genetics , Zona Pellucida Glycoproteins/genetics , Animals , Binding Sites , Exons , Genetic Variation , Male , Phylogeny , Rodentia/genetics , Selection, Genetic , Spermatozoa/metabolism , Zona Pellucida Glycoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...