Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Hum Mol Genet ; 33(11): 1001-1014, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38483348

ABSTRACT

The CEL gene encodes carboxyl ester lipase, a pancreatic digestive enzyme. CEL is extremely polymorphic due to a variable number tandem repeat (VNTR) located in the last exon. Single-base deletions within this VNTR cause the inherited disorder MODY8, whereas little is known about VNTR single-base insertions in pancreatic disease. We therefore mapped CEL insertion variants (CEL-INS) in 200 Norwegian patients with pancreatic neoplastic disorders. Twenty-eight samples (14.0%) carried CEL-INS alleles. Most common were insertions in repeat 9 (9.5%), which always associated with a VNTR length of 13 repeats. The combined INS allele frequency (0.078) was similar to that observed in a control material of 416 subjects (0.075). We performed functional testing in HEK293T cells of a set of CEL-INS variants, in which the insertion site varied from the first to the 12th VNTR repeat. Lipase activity showed little difference among the variants. However, CEL-INS variants with insertions occurring in the most proximal repeats led to protein aggregation and endoplasmic reticulum stress, which upregulated the unfolded protein response. Moreover, by using a CEL-INS-specific antibody, we observed patchy signals in pancreatic tissue from humans without any CEL-INS variant in the germline. Similar pancreatic staining was seen in knock-in mice expressing the most common human CEL VNTR with 16 repeats. CEL-INS proteins may therefore be constantly produced from somatic events in the normal pancreatic parenchyma. This observation along with the high population frequency of CEL-INS alleles strongly suggests that these variants are benign, with a possible exception for insertions in VNTR repeats 1-4.


Subject(s)
Minisatellite Repeats , Pancreas, Exocrine , Humans , Minisatellite Repeats/genetics , Animals , Mice , Pancreas, Exocrine/metabolism , Pancreas, Exocrine/enzymology , HEK293 Cells , Mutagenesis, Insertional/genetics , Alleles , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/enzymology , Gene Frequency , Male , Female , Lipase/genetics
2.
Pancreatology ; 22(8): 1099-1111, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36379850

ABSTRACT

BACKGROUND & AIMS: The CEL gene encodes the digestive enzyme carboxyl ester lipase. CEL-HYB1, a hybrid allele of CEL and its adjacent pseudogene CELP, is a genetic variant suggested to increase the risk of chronic pancreatitis (CP). Our aim was to develop a mouse model for CEL-HYB1 that enables studies of pancreatic disease mechanisms. METHODS: We established a knock-in mouse strain where the variable number of tandem repeat (VNTR) region of the endogenous mouse Cel gene was substituted with the mutated VNTR of the human CEL-HYB1 allele. Heterozygous and homozygous Cel-HYB1 mice and littermate wildtype controls were characterized with respect to pancreatic pathology and function. RESULTS: We successfully constructed a mouse model with pancreatic expression of a humanized CEL-HYB1 protein. The Cel-HYB1 mice spontaneously developed features of CP including inflammation, acinar atrophy and fatty replacement, and the phenotype became more pronounced as the animals aged. Moreover, Cel-HYB1 mice were normoglycemic at age 6 months, whereas at 12 months they exhibited impaired glucose tolerance. Immunostaining of pancreatic tissue indicated the formation of CEL protein aggregates, and electron microscopy showed dilated endoplasmic reticulum. Upregulation of the stress marker BiP/GRP78 was seen in pancreatic parenchyma obtained both from Cel-HYB1 animals and from a human CEL-HYB1 carrier. CONCLUSIONS: We have developed a new mouse model for CP that confirms the pathogenicity of the human CEL-HYB1 variant. Our findings place CEL-HYB1 in the group of genes that increase CP risk through protein misfolding-dependent pathways.


Subject(s)
Lipase , Pancreatitis, Chronic , Humans , Mice , Animals , Aged , Infant , Lipase/genetics , Pancreatitis, Chronic/genetics , Alleles , Minisatellite Repeats , Risk Factors
3.
J Clin Endocrinol Metab ; 107(4): e1455-e1466, 2022 03 24.
Article in English | MEDLINE | ID: mdl-34850019

ABSTRACT

CONTEXT: Maturity onset diabetes of the young, type 8 (MODY8) is associated with mutations in the CEL gene, which encodes the digestive enzyme carboxyl ester lipase. Several diabetes cases and families have in recent years been attributed to mutations in CEL without any functional or clinical evidence provided. OBJECTIVE: To facilitate correct MODY8 diagnostics, we screened 2 cohorts of diabetes patients and delineated the phenotype. METHODS: Young, lean Swedish and Finnish patients with a diagnosis of type 2 diabetes (352 cases, 406 controls) were screened for mutations in the CEL gene. We also screened 58 Czech MODY cases who had tested negative for common MODY genes. For CEL mutation-positive subjects, family history was recorded, and clinical investigations and pancreatic imaging performed. RESULTS: Two cases (1 Swedish and 1 Czech) with germline mutation in CEL were identified. Clinical and radiological investigations of these 2 probands and their families revealed dominantly inherited insulin-dependent diabetes, pancreatic exocrine dysfunction, and atrophic pancreas with lipomatosis and cysts. Notably, hereditary pancreatitis was the predominant phenotype in 1 pedigree. Both families carried single-base pair deletions in the proximal part of the CEL variable number of tandem repeat (VNTR) region in exon 11. The mutations are predicted to lead to aberrant protein tails that make the CEL protein susceptible to aggregation. CONCLUSION: The diagnosis of MODY8 requires a pancreatic exocrine phenotype and a deletion in the CEL VNTR in addition to dominantly inherited diabetes. CEL screening may be warranted also in families with hereditary pancreatitis of unknown genetic etiology.


Subject(s)
Diabetes Mellitus, Type 2 , Lipase/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Humans , Mutation , Pancreatitis, Chronic
4.
J Biol Chem ; 296: 100661, 2021.
Article in English | MEDLINE | ID: mdl-33862081

ABSTRACT

Variable number of tandem repeat (VNTR) sequences in the genome can have functional consequences that contribute to human disease. This is the case for the CEL gene, which is specifically expressed in pancreatic acinar cells and encodes the digestive enzyme carboxyl ester lipase. Rare single-base deletions (DELs) within the first (DEL1) or fourth (DEL4) VNTR segment of CEL cause maturity-onset diabetes of the young, type 8 (MODY8), an inherited disorder characterized by exocrine pancreatic dysfunction and diabetes. Studies on the DEL1 variant have suggested that MODY8 is initiated by CEL protein misfolding and aggregation. However, it is unclear how the position of single-base deletions within the CEL VNTR affects pathogenic properties of the protein. Here, we investigated four naturally occurring CEL variants, arising from single-base deletions in different VNTR segments (DEL1, DEL4, DEL9, and DEL13). When the four variants were expressed in human embryonic kidney 293 cells, only DEL1 and DEL4 led to significantly reduced secretion, increased intracellular aggregation, and increased endoplasmic reticulum stress compared with normal CEL protein. The level of O-glycosylation was affected in all DEL variants. Moreover, all variants had enzymatic activity comparable with that of normal CEL. We conclude that the longest aberrant protein tails, resulting from single-base deletions in the proximal VNTR segments, have highest pathogenic potential, explaining why DEL1 and DEL4 but not DEL9 and DEL13 have been observed in patients with MODY8. These findings further support the view that CEL mutations cause pancreatic disease through protein misfolding and proteotoxicity, leading to endoplasmic reticulum stress and activation of the unfolded protein response.


Subject(s)
Endoplasmic Reticulum Stress , Lipase/genetics , Lipase/metabolism , Minisatellite Repeats , Mutation , Proteostasis , Glycosylation , HEK293 Cells , Humans
5.
J Inherit Metab Dis ; 44(1): 240-252, 2021 01.
Article in English | MEDLINE | ID: mdl-32876354

ABSTRACT

Short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), encoded by the HADH gene, is a ubiquitously expressed mitochondrial enzyme involved in fatty acid oxidation. This protein also plays a role in insulin secretion as recessive HADH mutations cause congenital hyperinsulinism of infancy (CHI) via loss of an inhibitory interaction with glutamate dehydrogenase (GDH). Here, we present a functional evaluation of 16 SCHAD missense variants identified either in CHI patients or by high-throughput sequencing projects in various populations. To avoid interactions with endogenously produced SCHAD protein, we assessed protein stability, subcellular localization, and GDH interaction in a SCHAD knockout HEK293 cell line constructed by CRISPR-Cas9 methodology. We also established methods for efficient SCHAD expression and purification in E. coli, and tested enzymatic activity of the variants. Our analyses showed that rare variants of unknown significance identified in populations generally had similar properties as normal SCHAD. However, the CHI-associated variants p.Gly34Arg, p.Ile184Phe, p.Pro258Leu, and p.Gly303Ser were unstable with low protein levels detectable when expressed in HEK293 cells. Moreover, CHI variants p.Lys136Glu, p.His170Arg, and p.Met188Val presented normal protein levels but displayed clearly impaired enzymatic activity in vitro, and their interaction with GDH appeared reduced. Our results suggest that pathogenic missense variants of SCHAD either make the protein target of a post-translational quality control system or can impair the function of SCHAD without influencing its steady-state protein level. We did not find any evidence that rare SCHAD missense variants observed only in the general population and not in CHI patients are functionally affected.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/genetics , Congenital Hyperinsulinism/enzymology , Congenital Hyperinsulinism/genetics , Mutation, Missense , Amino Acid Substitution , Glutamate Dehydrogenase/metabolism , HEK293 Cells , Humans , Insulin Secretion/genetics , Phenotype
6.
Eur J Gastroenterol Hepatol ; 33(6): 839-843, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33079780

ABSTRACT

OBJECTIVES: The hybrid allele of the carboxyl ester lipase gene (CEL-HYB1) is a genetic risk factor for chronic pancreatitis (CP) although the mechanism promoting disease development is largely unknown. Here, we aimed to clinically describe subjects carrying the CEL-HYB1 allele and to elucidate why the protein product is pathogenic by analyzing pancreatic secretions and cellular models. METHODS: Norwegian cases (n = 154) diagnosed with recurrent acute pancreatitis or CP were subjected to genetic screening by a CEL-HYB1-specific PCR assay followed by Sanger sequencing. For investigation of CEL-HYB1 protein secretion, duodenal juice samples from cases and controls were analyzed by western blotting. HEK293cells were transfected with constructs expressing CEL-HYB1 or the normal CEL protein (CEL-WT) and analyzed by qPCR, cell fractionation and western blotting. RESULTS: Two CEL-HYB1-positive families were identified. In both pedigrees, CEL-HYB1 did not fully co-segregate with disease. One proband had recurrent acute pancreatitis and was an active smoker. Her mother was a CEL-HYB1 carrier who had suffered from several attacks of acute pancreatitis until she stopped smoking. The other proband was diagnosed with CP and pancreas divisum. Her CEL-HYB1-positive parent was symptom-free but exhibited pancreatic imaging changes. When analyzing the CEL protein in duodenal juice, CEL-WT was readily detectable but no band corresponding to the risk variant was seen. In CEL-HYB1-transfected cells, we observed impaired protein secretion, protein aggregation and endoplasmic reticulum stress. CONCLUSION: Our data suggest that CEL-HYB1, in combination with well-known pancreatitis risk factors, causes disease through the misfolding-dependent pathway of genetic CP risk.


Subject(s)
Lipase , Pancreatitis, Chronic , Acute Disease , Female , HEK293 Cells , Humans , Lipase/genetics , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/genetics , Risk Factors
7.
Hum Mutat ; 41(11): 1967-1978, 2020 11.
Article in English | MEDLINE | ID: mdl-32906201

ABSTRACT

Genetic variants contribute to the risk of chronic pancreatitis (CP) in adults and children. The risk variant CEL-HYB1, a recombinant hybrid allele of CEL and its neighboring pseudogene (CELP), encodes a pathogenic variant of the pancreatic digestive enzyme carboxyl ester lipase (CEL). We previously identified combinations of two non-synonymous SNPs, c.1463T>C (p. Ile488Thr) and c.1643C>T (p. Thr548Ile), in the break point region of CEL-HYB1. Herein, we tested whether these missense variants alter CP risk and their impact on functional properties of the CEL-HYB1 protein. Examination of CEL-HYB1 haplotypes in European patients and controls revealed that the combinationThr488-Ile548 was present only in cases (p ≤ .001). The lipase activity of purified recombinant CEL-HYB1 variants showed normal or near normal activity. CEL-HYB variants expressed in HEK293T cells all had decreased secretion compared with CEL, formed intracellular protein aggregates, and triggered endoplasmic reticulum stress. Thus, we propose that the presence of missense variants in CEL-HYB increases the pathogenicity of CEL-HYB1 through misfolding and gain-of-function proteotoxicity. Interestingly, Thr488-Ile548 and Thr488-Thr548 were equally pathogenic in the functional assays even though only the Thr488-Ile548 haplotype was significantly enriched in cases. The explanation for the mismatch between genetic and functional data requires further investigation.


Subject(s)
Lipase/genetics , Pancreatitis, Chronic/genetics , Polymorphism, Single Nucleotide , Pseudogenes , Alleles , Gain of Function Mutation , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mutation, Missense , Protein Folding
8.
Pancreatology ; 20(3): 377-384, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32007358

ABSTRACT

BACKGROUND/OBJECTIVES: Carboxyl ester lipase is a pancreatic enzyme encoded by CEL, an extremely polymorphic human gene. Pathogenic variants of CEL either increases the risk for chronic pancreatitis (CP) or cause MODY8, a syndrome of pancreatic exocrine and endocrine dysfunction. Here, we aimed to characterize a novel duplication allele of CEL (CEL-DUP2) and to investigate whether it associates with CP or pancreatic cancer. METHODS: The structure of CEL-DUP2 was determined by a combination of Sanger sequencing, DNA fragment analysis, multiplex ligation-dependent probe amplification and whole-genome sequencing. We developed assays for screening of CEL-DUP2 and analyzed cohorts of idiopathic CP, alcoholic CP and pancreatic cancer. CEL protein expression was analyzed by immunohistochemistry. RESULTS: CEL-DUP2 consists of an extra copy of the complete CEL gene. The allele has probably arisen from non-allelic, homologous recombination involving the adjacent pseudogene of CEL. We found no association between CEL-DUP2 carrier frequency and CP in cohorts from France (cases/controls: 2.5%/2.4%; P = 1.0), China (10.3%/8.1%; P = 0.08) or Germany (1.6%/2.3%; P = 0.62). Similarly, no association with disease was observed in alcohol-induced pancreatitis (Germany: 3.2%/2.3%; P = 0.51) or pancreatic cancer (Norway; 2.5%/3.2%; P = 0.77). Notably, the carrier frequency of CEL-DUP2 was more than three-fold higher in Chinese compared with Europeans. CEL protein expression was similar in tissues from CEL-DUP2 carriers and controls. CONCLUSIONS: Our results support the contention that the number of CEL alleles does not influence the risk of pancreatic exocrine disease. Rather, the pathogenic CEL variants identified so far involve exon 11 sequence changes that substantially alter the protein's tail region.


Subject(s)
Lipase/genetics , Pancreatitis, Chronic/epidemiology , Pancreatitis, Chronic/genetics , Adult , Aged , Alleles , DNA/genetics , Female , Gene Duplication , Gene Frequency , Genetic Testing , Heterozygote , Humans , Male , Middle Aged , Pancreas/pathology , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/genetics , Pancreatitis, Alcoholic/epidemiology , Pancreatitis, Alcoholic/genetics , Pancreatitis, Chronic/pathology , Risk
9.
Cells ; 9(1)2020 01 18.
Article in English | MEDLINE | ID: mdl-31963687

ABSTRACT

Mutations in the gene encoding the digestive enzyme carboxyl ester lipase (CEL) are linked to pancreatic disease. The CEL variant denoted CEL-HYB predisposes to chronic pancreatitis, whereas the CEL-MODY variant causes MODY8, an inherited disorder of endocrine and exocrine pancreatic dysfunction. Both pathogenic variants exhibit altered biochemical and cellular properties compared with the normal CEL protein (CEL-WT, wild type). We here aimed to investigate effects of CEL variants on pancreatic acinar and ductal cell lines. Following extracellular exposure, CEL-HYB, CEL-MODY, and CEL-WT were endocytosed. The two pathogenic CEL proteins significantly reduced cell viability compared with CEL-WT. We also found evidence of CEL uptake in primary human pancreatic acinar cells and in native ductal tissue. Moreover, coexpression of CEL-HYB or CEL-MODY with CEL-WT affected secretion of the latter, as CEL-WT was observed to accumulate intracellularly to a higher degree in the presence of either pathogenic variant. Notably, in coendocytosis experiments, both pathogenic variants displayed a modest effect on cell viability when CEL-WT was present, indicating that the normal protein might diminish toxic effects conferred by CEL-HYB and CEL-MODY. Taken together, our findings provide valuable insight into how the pathogenic CEL variants predispose to pancreatic disease and why these disorders develop slowly over time.


Subject(s)
Carboxylesterase/genetics , Carboxylesterase/metabolism , Mutation/genetics , Pancreas/enzymology , Acinar Cells/metabolism , Apoptosis , Cell Line , Cell Survival , Diabetes Mellitus, Type 2/pathology , Endocytosis , HEK293 Cells , Humans , Pancreatic Ducts/metabolism , Protein Binding
10.
Pancreatology ; 19(4): 531-534, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31036489

ABSTRACT

OBJECTIVES: It has previously been reported in a European case-control study with patients from Germany and France that CEL-HYB1, a hybrid allele of the carboxyl ester lipase (CEL) gene and its pseudogene CELP, increases susceptibility to chronic pancreatitis (CP). Here, we aimed to replicate this finding in Polish pediatric patients with CP. METHOD: The distribution of the CEL-HYB1 allele in a CP pediatric cohort (n = 147, median age at CP onset 7.6 years) with no history of alcohol/smoking abuse was compared with ethnically matched healthy controls (n = 500, median age 46 years). Screening was performed using long-range PCR followed by agarose gel-electrophoresis. RESULTS: We observed no significant difference in the carrier frequency of the CEL-HYB1 allele between CP patients (7/147, 4.8%) and controls (12/500, 2.4%; P = 0.16). CONCLUSIONS: This study found no statistically significant association between CEL-HYB1 and chronic pancreatitis in a cohort of Polish pediatric CP patients.


Subject(s)
Lipase/genetics , Pancreatitis, Chronic/epidemiology , Pancreatitis, Chronic/genetics , Adolescent , Age of Onset , Alleles , Carrier State , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Gene Frequency , Humans , Infant , Male , Poland/epidemiology , Polymerase Chain Reaction
11.
J Biol Chem ; 293(50): 19476-19491, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30315106

ABSTRACT

Carboxyl-ester lipase (CEL) is a pancreatic fat-digesting enzyme associated with human disease. Rare mutations in the CEL gene cause a syndrome of pancreatic exocrine and endocrine dysfunction denoted MODY8, whereas a recombined CEL allele increases the risk for chronic pancreatitis. Moreover, CEL has been linked to pancreatic ductal adenocarcinoma (PDAC) through a postulated oncofetal CEL variant termed feto-acinar pancreatic protein (FAPP). The monoclonal antibody mAb16D10 was previously reported to detect a glycotope in the highly O-glycosylated, mucin-like C terminus of CEL/FAPP. We here assessed the expression of human CEL in malignant pancreatic lesions and cell lines. CEL was not detectably expressed in neoplastic cells, implying that FAPP is unlikely to be a glycoisoform of CEL in pancreatic cancer. Testing of the mAb16D10 antibody in glycan microarrays then demonstrated that it recognized structures containing terminal GalNAc-α1,3(Fuc-α1,2)Gal (blood group A antigen) and also repeated protein sequences containing GalNAc residues linked to Ser/Thr (Tn antigen), findings that were supported by immunostainings of human pancreatic tissue. To examine whether the CEL glycoprotein might be modified by blood group antigens, we used high-sensitivity MALDI-TOF MS to characterize the released O-glycan pool of CEL immunoprecipitated from human pancreatic juice. We found that the O-glycome of CEL consisted mainly of core 1/core 2 structures with a composition depending on the subject's FUT2 and ABO gene polymorphisms. Thus, among digestive enzymes secreted by the pancreas, CEL is a glycoprotein with some unique characteristics, supporting the view that it could serve additional biological functions to its cholesteryl esterase activity in the duodenum.


Subject(s)
ABO Blood-Group System/metabolism , Carboxylesterase/chemistry , Carboxylesterase/metabolism , Pancreas/enzymology , Polysaccharides/metabolism , Cell Line, Tumor , Gene Expression Regulation, Enzymologic , Humans , Protein Domains
12.
Pancreatology ; 18(1): 12-19, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29233499

ABSTRACT

The enzyme carboxyl ester lipase (CEL), also known as bile salt-dependent or -stimulated lipase (BSDL, BSSL), hydrolyzes dietary fat, cholesteryl esters and fat-soluble vitamins in the duodenum. CEL is mainly expressed in pancreatic acinar cells and lactating mammary glands. The human CEL gene resides on chromosome 9q34.3 and contains a variable number of tandem repeats (VNTR) region that encodes a mucin-like protein tail. Although the number of normal repeats does not appear to significantly influence the risk for pancreatic disease, single-base pair deletions in the first VNTR repeat cause a syndrome of endocrine and exocrine dysfunction denoted MODY8. Hallmarks are low fecal elastase levels and pancreatic lipomatosis manifesting before the age of twenty, followed by development of diabetes and pancreatic cysts later in life. The mutant protein forms intracellular and extracellular aggregates, suggesting that MODY8 is a protein misfolding disease. Recently, a recombined allele between CEL and its pseudogene CELP was discovered. This allele (CEL-HYB) encodes a chimeric protein with impaired secretion increasing five-fold the risk for chronic pancreatitis. The CEL gene has proven to be exceptionally polymorphic due to copy number variants of the CEL-CELP locus and alterations involving the VNTR. Genome-wide association studies or deep sequencing cannot easily pick up this wealth of genetic variation. CEL is therefore an attractive candidate gene for further exploration of links to pancreatic disease.


Subject(s)
Lipase/genetics , Lipase/metabolism , Pancreatic Diseases/enzymology , Pancreatic Diseases/genetics , Animals , Gene Expression Regulation, Enzymologic , Humans , Mutation , Pancreatic Diseases/metabolism
13.
Mol Cell Endocrinol ; 454: 146-157, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28648619

ABSTRACT

The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal (30LKKVMRR36) in the human enzyme. Substituting the residues KK31,32 and RR35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell.


Subject(s)
Cell Nucleus/metabolism , Glucokinase/chemistry , Glucokinase/metabolism , Insulin-Secreting Cells/enzymology , Nuclear Localization Signals/metabolism , Sumoylation , Active Transport, Cell Nucleus/drug effects , Amino Acid Sequence , Animals , Cytosol/drug effects , Cytosol/metabolism , Glucose/pharmacology , Humans , Insulin-Secreting Cells/metabolism , Male , Mass Spectrometry , Mice, Inbred C57BL , Structure-Activity Relationship
14.
Pancreatology ; 17(1): 83-88, 2017.
Article in English | MEDLINE | ID: mdl-27773618

ABSTRACT

BACKGROUND/OBJECTIVES: We have recently described copy number variants (CNVs) of the human carboxyl-ester lipase (CEL) gene, including a recombined deletion allele (CEL-HYB) that is a genetic risk factor for chronic pancreatitis. Associations with pancreatic disease have also been reported for the variable number of tandem repeat (VNTR) region located in CEL exon 11. Here, we examined if CEL CNVs and VNTR length polymorphisms affect the risk for developing pancreatic cancer. METHODS: CEL CNVs and VNTR were genotyped in a German family with non-alcoholic chronic pancreatitis and pancreatic cancer, in 265 German and 197 Norwegian patients diagnosed with pancreatic adenocarcinoma, and in 882 controls. CNV screening was performed using PCR assays followed by agarose gel electrophoresis whereas VNTR lengths were determined by DNA fragment analysis. RESULTS: The investigated family was CEL-HYB-positive. However, an association of CEL-HYB or a duplication CEL allele with pancreatic cancer was not seen in our two patient cohorts. The frequency of the 23-repeat VNTR allele was borderline significant in Norwegian cases compared to controls (1.2% vs. 0.3%; P = 0.05). For all other VNTR lengths, no statistically significant difference in frequency was observed. Moreover, no association with pancreatic cancer was detected when CEL VNTR lengths were pooled into groups of short, normal or long alleles. CONCLUSIONS: We could not demonstrate an association between CEL CNVs and pancreatic cancer. An association is also unlikely for CEL VNTR lengths, although analyses in larger materials are necessary to completely exclude an effect of rare VNTR alleles.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , DNA Copy Number Variations , Lipase/genetics , Minisatellite Repeats , Pancreatic Neoplasms/genetics , Case-Control Studies , Female , Humans , Male , Risk Factors
15.
PLoS One ; 11(11): e0165567, 2016.
Article in English | MEDLINE | ID: mdl-27802312

ABSTRACT

BACKGROUND: Carboxyl-ester lipase (CEL) contributes to fatty acid ethyl ester metabolism, which is implicated in alcoholic pancreatitis. The CEL gene harbours a variable number of tandem repeats (VNTR) region in exon 11. Variation in this VNTR has been linked to monogenic pancreatic disease, while conflicting results were reported for chronic pancreatitis (CP). Here, we aimed to investigate a potential association of CEL VNTR lengths with alcoholic CP. METHODS: Overall, 395 alcoholic CP patients, 218 patients with alcoholic liver cirrhosis (ALC) serving as controls with a comparable amount of alcohol consumed, and 327 healthy controls from Germany and the United Kingdom (UK) were analysed by determination of fragment lengths by capillary electrophoresis. Allele frequencies and genotypes of different VNTR categories were compared between the groups. RESULTS: Twelve repeats were overrepresented in UK ACP patients (P = 0.04) compared to controls, whereas twelve repeats were enriched in German ALC compared to alcoholic CP patients (P = 0.03). Frequencies of CEL VNTR lengths of 14 and 15 repeats differed between German ALC patients and healthy controls (P = 0.03 and 0.008, respectively). However, in the genotype and pooled analysis of VNTR lengths no statistical significant association was depicted. Additionally, the 16-16 genotype as well as 16 repeats were more frequent in UK ALC than in alcoholic CP patients (P = 0.034 and 0.02, respectively). In all other calculations, including pooled German and UK data, allele frequencies and genotype distributions did not differ significantly between patients and controls or between alcoholic CP and ALC. CONCLUSIONS: We did not obtain evidence that CEL VNTR lengths are associated with alcoholic CP. However, our results suggest that CEL VNTR lengths might associate with ALC, a finding that needs to be clarified in larger cohorts.


Subject(s)
Lipase/genetics , Liver Cirrhosis, Alcoholic/genetics , Minisatellite Repeats , Pancreatitis, Alcoholic/genetics , Adult , Aged , Aged, 80 and over , Chronic Disease , Exons , Female , Genetic Predisposition to Disease , Genotype , Germany/epidemiology , Humans , Liver Cirrhosis, Alcoholic/epidemiology , Male , Middle Aged , Pancreatitis, Alcoholic/epidemiology , United Kingdom/epidemiology
16.
Biochemistry ; 55(33): 4636-41, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27509211

ABSTRACT

A recently discovered class of endogenous mammalian lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), possesses anti-diabetic and anti-inflammatory activities. Here, we identified and validated carboxyl ester lipase (CEL), a pancreatic enzyme hydrolyzing cholesteryl esters and other dietary lipids, as a FAHFA hydrolase. Variants of CEL have been linked to maturity-onset diabetes of the young, type 8 (MODY8), and to chronic pancreatitis. We tested the FAHFA hydrolysis activity of the CEL MODY8 variant and found a modest increase in activity as compared with that of the normal enzyme. Together, the data suggest that CEL might break down dietary FAHFAs.


Subject(s)
Carboxylesterase/metabolism , Fatty Acids/chemistry , Esters , Substrate Specificity
18.
J Clin Endocrinol Metab ; 100(5): E767-75, 2015 May.
Article in English | MEDLINE | ID: mdl-25751106

ABSTRACT

CONTEXT: The synthesis of glycogen is initiated by glycogenin. In humans, glycogenin-1 is expressed ubiquitously, whereas glycogenin-2 (GN2) is highly expressed in liver. It has therefore been suggested that GN2 is a liver isoform of glycogenin. In a search for possible copy number variations associated with monogenic diabetes, we identified a 102-kb deletion of the X chromosome involving the entire GYG2 gene (encoding GN2) in 2 families. OBJECTIVE: The purpose of this study was to test whether male GYG2 deletion carriers had abnormal glucose metabolism and/or glycogen synthesis. DESIGN, SETTING, AND PATIENTS: Two families with diabetes and a GYG2 deletion were investigated with medical history and examination, glucagon stimulation tests, and liver biopsies. RESULTS: We identified a GYG2 deletion in 3 members of family 1, 8 members of family 2, and 1 blood donor. The deletion showed no clear cosegregation with diabetes. Deletion carriers reported no symptoms related to fasting. Results of cardiac examination and abdominal ultrasound imaging were normal. A glucagon stimulation test in 4 male deletion carriers showed a mean rise in plasma glucose of 3.6 mmol/L (95% confidence interval, 2.9-4.2) compared with 2.8 mmol/L (95% confidence interval, 2.2-3.4) in control subjects. Liver biopsy specimens did not show clear morphologic changes by light microscopy and showed the presence of both α- and ß-glycogen by electron microscopy. We detected GYG1 but not GYG2 mRNA expression in the liver biopsy specimens. CONCLUSIONS: This is the first evaluation of humans without GN2 expression. Our data indicate that GN2 is not required for liver glycogen synthesis and glucagon-stimulated glucose release.


Subject(s)
Blood Glucose/metabolism , Glucagon/pharmacology , Glucosyltransferases/genetics , Liver Glycogen/biosynthesis , Liver/metabolism , Adult , Carbohydrate Metabolism/genetics , Female , Glucosyltransferases/metabolism , Humans , Liver/drug effects , Male , Middle Aged
19.
Nat Genet ; 47(5): 518-522, 2015 May.
Article in English | MEDLINE | ID: mdl-25774637

ABSTRACT

Carboxyl ester lipase is a digestive pancreatic enzyme encoded by the CEL gene. Mutations in CEL cause maturity-onset diabetes of the young as well as pancreatic exocrine dysfunction. Here we describe a hybrid allele (CEL-HYB) originating from a crossover between CEL and its neighboring pseudogene, CELP. In a discovery series of familial chronic pancreatitis cases, we observed CEL-HYB in 14.1% (10/71) of cases compared to 1.0% (5/478) of controls (odds ratio (OR) = 15.5; 95% confidence interval (CI) = 5.1-46.9; P = 1.3 × 10(-6) by two-tailed Fisher's exact test). In three replication studies of nonalcoholic chronic pancreatitis, we identified CEL-HYB in a total of 3.7% (42/1,122) cases and 0.7% (30/4,152) controls (OR = 5.2; 95% CI = 3.2-8.5; P = 1.2 × 10(-11); formal meta-analysis). The allele was also enriched in alcoholic chronic pancreatitis. Expression of CEL-HYB in cellular models showed reduced lipolytic activity, impaired secretion, prominent intracellular accumulation and induced autophagy. These findings implicate a new pathway distinct from the protease-antiprotease system of pancreatic acinar cells in chronic pancreatitis.


Subject(s)
Carboxylesterase/genetics , Lipase/genetics , Pancreatitis, Chronic/genetics , Alcoholism/complications , Alcoholism/enzymology , Alcoholism/genetics , Amino Acid Sequence , Carboxylesterase/metabolism , Case-Control Studies , DNA Copy Number Variations , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Pancreatitis, Chronic/enzymology , Polymorphism, Single Nucleotide , Recombination, Genetic
20.
J Biol Chem ; 289(42): 29097-111, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25160620

ABSTRACT

Maturity-onset diabetes of the young, type 8 (MODY8) is characterized by a syndrome of autosomal dominantly inherited diabetes and exocrine pancreatic dysfunction. It is caused by deletion mutations in the last exon of the carboxyl ester lipase (CEL) gene, resulting in a CEL protein with increased tendency to aggregate. In this study we investigated the intracellular distribution of the wild type (WT) and mutant (MUT) CEL proteins in cellular models. We found that both CEL-WT and CEL-MUT were secreted via the endoplasmic reticulum and Golgi compartments. However, their subcellular distributions differed, as only CEL-MUT was observed as an aggregate at the cell surface and inside large cytoplasmic vacuoles. Many of the vacuoles were identified as components of the endosomal system, and after its secretion, the mutant CEL protein was re-internalized, transported to the lysosomes, and degraded. Internalization of CEL-MUT also led to reduced viability of pancreatic acinar and beta cells. These findings may have implications for the understanding of how the acinar-specific CEL-MUT protein causes both exocrine and endocrine pancreatic disease.


Subject(s)
Carboxylesterase/metabolism , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/genetics , Endocytosis , Lipase/metabolism , Pancreas, Exocrine/metabolism , Animals , Apoptosis , Cell Membrane/enzymology , Cell Survival , Culture Media, Conditioned/chemistry , Cycloheximide/chemistry , HEK293 Cells , HeLa Cells , Humans , Mutation , Protein Binding , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...