Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25104973

ABSTRACT

BACKGROUND: The recent introduction of pathology tissue-chromatin immunoprecipitation (PAT-ChIP), a technique allowing chromatin immunoprecipitation from formalin-fixed and paraffin-embedded (FFPE) tissues, has expanded the application potential of epigenetic studies in tissue samples. However, FFPE tissue section analysis is strongly limited by tissue heterogeneity, which hinders linking the observed epigenetic events to the corresponding cellular population. Thus, ideally, to take full advantage of PAT-ChIP approaches, procedures able to increase the purity and homogeneity of cell populations from FFPE tissues are required. RESULTS: In this study, we tested the use of both core needle biopsies (CNBs) and laser microdissection (LMD), evaluating the compatibility of these methods with the PAT-ChIP procedure. Modifications of the original protocols were introduced in order to increase reproducibility and reduce experimental time. We first demonstrated that chromatin can be prepared and effectively immunoprecipitated starting from 0.6-mm-diameter CNBs. Subsequently, in order to assess the applicability of PAT-ChIP to LMD samples, we tested the effects of hematoxylin or eosin staining on chromatin extraction and immunoprecipitation, as well as the reproducibility of our technique when using particularly low quantities of starting material. Finally, we carried out the PAT-ChIP using chromatin extracted from either normal tissue or neoplastic lesions, the latter obtained by LMD from FFPE lung sections derived from mutant K-ras(v12) transgenic mice or from human adeno- or squamous lung carcinoma samples. Well characterized histone post-translational modifications (HPTMs), such as H3K4me3, H3K27me3, H3K27Ac, and H3K9me3, were specifically immunoselected, as well as the CTCF transcription factor and RNA polymerase II (Pol II). CONCLUSIONS: Epigenetic profiling can be performed on enriched cell populations obtained from FFPE tissue sections. The improved PAT-ChIP protocol will be used for the discovery and/or validation of novel epigenetic biomarkers in FFPE human samples.

2.
ChemMedChem ; 9(7): 1574-85, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24753447

ABSTRACT

Heat-shock protein 90 (Hsp90) is a molecular chaperone involved in the stabilization of key oncogenic signaling proteins, and therefore, inhibition of Hsp90 represents a new strategy in cancer therapy. 2-Amino-7-[4-fluoro-2-(3-pyridyl)phenyl]-4-methyl-7,8-dihydro-6H-quinazolin-5-one oxime is a racemic Hsp90 inhibitor that targets the N-terminal adenosine triphosphatase site. We developed a method to resolve the enantiomers and evaluated their inhibitory activity on Hsp90 and the consequent antitumor effects. The (S) stereoisomer emerged as a potent Hsp90 inhibitor in biochemical and cellular assays. In addition, this enantiomer exhibited high oral bioavailability in mice and excellent antitumor activity in two different human cancer xenograft models.


Subject(s)
Antineoplastic Agents/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Oximes/chemistry , Quinazolinones/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Binding Sites , Cell Line, Tumor , Female , HCT116 Cells , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Nude , Microsomes/metabolism , Molecular Docking Simulation , Neoplasms/drug therapy , Oximes/pharmacology , Oximes/therapeutic use , Protein Binding/drug effects , Protein Structure, Tertiary , Stereoisomerism , Xenograft Model Antitumor Assays
3.
J Med Chem ; 53(2): 822-39, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20017493

ABSTRACT

The histone deacetylases (HDACs) are able to regulate gene expression, and histone deacetylase inhibitors (HDACi) emerged as a new class of agents in the treatment of cancer as well as other human disorders such as neurodegenerative diseases. In the present investigation, we report on the synthesis and biological evaluation of compounds derived from the expansion of a HDAC inhibitor scaffold having N-hydroxy-3-phenyl-2-propenamide and N-hydroxy-3-(pyridin-2-yl)-2-propenamide as core structures and containing a phenyloxopropenyl moiety, either unsubstituted or substituted by a 4-methylpiperazin-1-yl or 4-methylpiperazin-1-ylmethyl group. The compounds were evaluated for their ability to inhibit nuclear HDACs, as well as for their in vitro antiproliferative activity. Moreover, their metabolic stability in microsomes and aqueous solubility were studied and selected compounds were further characterized by in vivo pharmacokinetic experiments. These compounds showed a remarkable stability in vivo, compared to hydroxamic acid HDAC inhibitors that have already entered clinical trials. The representative compound 30b showed in vivo antitumor activity in a human colon carcinoma xenograft model.


Subject(s)
Acrylamides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Histone Deacetylase Inhibitors/chemical synthesis , Acrylamides/pharmacology , Antineoplastic Agents/pharmacokinetics , Benzene Derivatives , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Drug Stability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , HeLa Cells , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/therapeutic use , Humans , Pyridines , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
ChemMedChem ; 4(6): 963-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19301319

ABSTRACT

Heat shock protein 90 (Hsp90) plays a key role in stress response and protection of the cell against the effects of mutation. Herein we report the identification of an Hsp90 inhibitor identified by fragment screening using a high-concentration biochemical assay, as well as its optimisation by in silico searching coupled with a structure-based drug design (SBDD) approach.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Oximes/chemistry , Pyrimidines/chemistry , Binding Sites , Cell Line, Tumor , Computer Simulation , Crystallography, X-Ray , Drug Design , HSP90 Heat-Shock Proteins/metabolism , Humans , Oximes/chemical synthesis , Oximes/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL