Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Sci Rep ; 14(1): 9991, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693202

ABSTRACT

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.


Subject(s)
Endothelial Cells , Gene Expression Profiling , Myocardial Infarction , Animals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Transcriptome , Male , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Disease Models, Animal , Cell Proliferation , Cell Movement/genetics
2.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564291

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Subject(s)
Cardiomyopathies , Dystrophin , Mice, Inbred mdx , Mice, Knockout , Muscle Proteins , Muscular Dystrophy, Duchenne , Proteolipids , Utrophin , Animals , Male , Mice , Calcium/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Mitochondria, Heart/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proteolipids/metabolism , Proteolipids/genetics , Utrophin/genetics , Utrophin/metabolism
3.
Expert Opin Ther Targets ; 27(12): 1231-1245, 2023.
Article in English | MEDLINE | ID: mdl-38009300

ABSTRACT

INTRODUCTION: Lipid-laden foam cells within atherosclerotic plaques are key players in all phases of lesion development including its progression, necrotic core formation, fibrous cap thinning, and eventually plaque rupture. Manipulating foam cell biology is thus an attractive therapeutic strategy at early, middle, and even late stages of atherosclerosis. Traditional therapies have focused on prevention, especially lowering plasma lipid levels. Despite these interventions, atherosclerosis remains a major cause of cardiovascular disease, responsible for the largest numbers of death worldwide. AREAS COVERED: Foam cells within atherosclerotic plaques are comprised of macrophages, vascular smooth muscle cells, and other cell types which are exposed to high concentrations of lipoproteins accumulating within the subendothelial intimal layer. Macrophage-derived foam cells are particularly well studied and have provided important insights into lipid metabolism and atherogenesis. The contributions of foam cell-based processes are discussed with an emphasis on areas of therapeutic potential and directions for drug development. EXERT OPINION: As key players in atherosclerosis, foam cells are attractive targets for developing more specific, targeted therapies aimed at resolving atherosclerotic plaques. Recent advances in our understanding of lipid handling within these cells provide insights into how they might be manipulated and clinically translated to better treat atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Foam Cells/metabolism , Foam Cells/pathology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Atherosclerosis/drug therapy , Macrophages/metabolism , Lipoproteins
4.
Neural Regen Res ; 18(1): 102-106, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35799516

ABSTRACT

Brain-derived neurotrophic factor is the most prevalent member of the nerve growth factor family. Since its discovery in 1978, this enigmatic molecule has spawned more than 27,000 publications, most of which are focused on neurological disorders. Brain-derived neurotrophic factor is indispensable during embryogenesis and postnatally for the normal development and function of both the central and peripheral nervous systems. It is becoming increasingly clear, however, that brain-derived neurotrophic factor likewise plays crucial roles in a variety of other biological functions independently of sympathetic or parasympathetic involvement. Brain-derived neurotrophic factor is also increasingly recognized as a sophisticated environmental sensor and master coordinator of whole organismal physiology. To that point, we recently found that a common nonsynonymous (Val66→Met) single nucleotide polymorphism in the brain-derived neurotrophic factor gene (rs6265) not only substantially alters basal cardiac transcriptomics in mice but subtly influences heart gene expression and function differentially in males and females. In addition to a short description of recent results from associative neuropsychiatric studies, this review provides an eclectic assortment of research reports that support a modulatory role for rs6265 including and beyond the central nervous system.

5.
mBio ; 13(4): e0182222, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35900097

ABSTRACT

The U.S. Food and Drug Administration-authorized mRNA- and adenovirus-based SARS-CoV-2 vaccines are intramuscularly injected in two doses and effective in preventing COVID-19, but they do not induce efficient mucosal immunity or prevent viral transmission. Here, we report the first noninfectious, bacteriophage T4-based, multicomponent, needle- and adjuvant-free, mucosal vaccine harboring engineered Spike trimers on capsid exterior and nucleocapsid protein in the interior. Intranasal administration of two doses of this T4 SARS-CoV-2 vaccine 21 days apart induced robust mucosal immunity, in addition to strong systemic humoral and cellular immune responses. The intranasal vaccine induced broad virus neutralization antibody titers against multiple variants, Th1-biased cytokine responses, strong CD4+ and CD8+ T cell immunity, and high secretory IgA titers in sera and bronchoalveolar lavage specimens from vaccinated mice. All of these responses were much stronger in intranasally vaccinated mice than those induced by the injected vaccine. Furthermore, the nasal vaccine provided complete protection and sterilizing immunity against the mouse-adapted SARS-CoV-2 MA10 strain, the ancestral WA-1/2020 strain, and the most lethal Delta variant in both BALB/c and human angiotensin converting enzyme (hACE2) knock-in transgenic mouse models. In addition, the vaccine elicited virus-neutralizing antibodies against SARS-CoV-2 variants in bronchoalveolar lavage specimens, did not affect the gut microbiota, exhibited minimal lung lesions in vaccinated and challenged mice, and is completely stable at ambient temperature. This modular, needle-free, phage T4 mucosal vaccine delivery platform is therefore an excellent candidate for designing efficacious mucosal vaccines against other respiratory infections and for emergency preparedness against emerging epidemic and pandemic pathogens. IMPORTANCE According to the World Health Organization, COVID-19 may have caused ~15-million deaths across the globe and is still ravaging the world. Another wave of ~100 million infections is predicted in the United States due to the emergence of highly transmissible immune-escaped Omicron variants. The authorized vaccines would not prevent these transmissions since they do not trigger mucosal immunity. We circumvented this limitation by developing a needle-free, bacteriophage T4-based, mucosal vaccine. This intranasally administered vaccine generates superior mucosal immunity in mice, in addition to inducing robust humoral and cell-mediated immune responses, and provides complete protection and sterilizing immunity against SARS-CoV-2 variants. The vaccine is stable, adjuvant-free, and cost-effectively manufactured and distributed, making it a strategically important next-generation COVID vaccine for ending this pandemic.


Subject(s)
Bacteriophages , COVID-19 , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
6.
Biology (Basel) ; 11(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35625411

ABSTRACT

Neuregulin-1ß (NRG-1ß) is a growth and differentiation factor with pleiotropic systemic effects. Because NRG-1ß has therapeutic potential for heart failure and has known growth effects in skeletal muscle, we hypothesized that it might affect heart failure-associated cachexia, a severe co-morbidity characterized by a loss of muscle mass. We therefore assessed NRG-1ß's effect on intercostal skeletal muscle gene expression in a swine model of heart failure using recombinant glial growth factor 2 (USAN-cimaglermin alfa), a version of NRG-1ß that has been tested in humans with systolic heart failure. Animals received one of two intravenous doses (0.67 or 2 mg/kg) of NRG-1ß bi-weekly for 4 weeks, beginning one week after infarct. Based on paired-end RNA sequencing, NRG-1ß treatment altered the intercostal muscle gene expression of 581 transcripts, including genes required for myofiber growth, maintenance and survival, such as MYH3, MYHC, MYL6B, KY and HES1. Importantly, NRG-1ß altered the directionality of at least 85 genes associated with cachexia, including myostatin, which negatively regulates myoblast differentiation by down-regulating MyoD expression. Consistent with this, MyoD was increased in NRG-1ß-treated animals. In vitro experiments with myoblast cell lines confirmed that NRG-1ß induces ERBB-dependent differentiation. These findings suggest a NRG-1ß-mediated anti-atrophic, anti-cachexia effect that may provide additional benefits to this potential therapy in heart failure.

7.
Micromachines (Basel) ; 13(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35457828

ABSTRACT

The detection of early-stage cancer offers patients the best chance of treatment and could help reduce cancer mortality rates. However, cancer cells or biomarkers are present in extremely small amounts in the early stages of cancer, requiring high-precision quantitative approaches with high sensitivity for accurate detection. With the advantages of simplicity, rapid response, reusability, and a low cost, aptamer-based electrochemical biosensors have received considerable attention as a promising approach for the clinical diagnosis of early-stage cancer. Various methods for developing highly sensitive aptasensors for the early detection of cancers in clinical samples are in progress. In this article, we discuss recent advances in the development of electrochemical aptasensors for the early detection of different cancer biomarkers and cells based on different detection strategies. Clinical applications of the aptasensors and future perspectives are also discussed.

8.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210092

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a pleiotropic neuronal growth and survival factor that is indispensable in the brain, as well as in multiple other tissues and organs, including the cardiovascular system. In approximately 30% of the general population, BDNF harbors a nonsynonymous single nucleotide polymorphism that may be associated with cardiometabolic disorders, coronary artery disease, and Duchenne muscular dystrophy cardiomyopathy. We recently showed that transgenic mice with the human BDNF rs6265 polymorphism (Val66Met) exhibit altered cardiac function, and that cardiomyocytes isolated from these mice are also less contractile. To identify the underlying mechanisms involved, we compared cardiac function by echocardiography and performed deep sequencing of RNA extracted from whole hearts of all three genotypes (Val/Val, Val/Met, and Met/Met) of both male and female Val66Met mice. We found female-specific cardiac alterations in both heterozygous and homozygous carriers, including increased systolic (26.8%, p = 0.047) and diastolic diameters (14.9%, p = 0.022), increased systolic (57.9%, p = 0.039) and diastolic volumes (32.7%, p = 0.026), and increased stroke volume (25.9%, p = 0.033), with preserved ejection fraction and fractional shortening. Both males and females exhibited lower heart rates, but this change was more pronounced in female mice than in males. Consistent with phenotypic observations, the gene encoding SERCA2 (Atp2a2) was reduced in homozygous Met/Met mice but more profoundly in females compared to males. Enriched functions in females with the Met allele included cardiac hypertrophy in response to stress, with down-regulation of the gene encoding titin (Tcap) and upregulation of BNP (Nppb), in line with altered cardiac functional parameters. Homozygous male mice on the other hand exhibited an inflammatory profile characterized by interferon-γ (IFN-γ)-mediated Th1 immune responses. These results provide evidence for sex-based differences in how the BDNF polymorphism modifies cardiac physiology, including female-specific alterations of cardiac-specific transcripts and male-specific activation of inflammatory targets.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Amino Acid Substitution , Animals , Brain-Derived Neurotrophic Factor/metabolism , Female , Gene Expression , Male , Methionine/genetics , Mice , Mice, Transgenic , Mutation, Missense , Polymorphism, Single Nucleotide , Sex Characteristics , Valine/genetics , Ventricular Function/genetics , Ventricular Function/physiology
9.
Expert Opin Drug Saf ; 20(11): 1443-1450, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34259127

ABSTRACT

BACKGROUND: D-penicillamine (D-pen) is a copper-chelating drug and has immune-modulatory properties. D-pen is used to treat rheumatoid arthritis, Wilson's disease, and kidney stones (cystinuria). However, associated adverse events (AEs) of D-pen treatment are frequent and often serious. Therefore, a comprehensive assessment of the safety profile of D-pen is urgently needed. RESEARCH DESIGN AND METHODS: We identified and analyzed AEs associated with D-pen between April-1970 to July-2020 from the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) databases and calculated the reported odds ratio (ROR) with 95% confidence intervals (CI) using the disproportionality analysis. RESULTS: A total of 9,150,234 AEs related to drugs were reported in the FAERS database, of which 542 were related to D-Pen. We report that D-pen was associated with dystonia (ROR: 20.52; 95%CI: 12.46-33.80), drug hypersensitivity (ROR: 5.42; 95%CI: 3.72-7.90), pancytopenia (ROR: 10.20; 95%CI: 5.61-18.56), joint swelling (ROR: 9.07; 95%CI: 5.51-14.94), renal-impairment (ROR: 6.68; 95%CI: 3.67-12.15), dysphagia (ROR: 5.05; 95%CI: 2.76-8.89), aggravation of condition (ROR: 4.16; 95%CI: 2.60-6.67), congestive cardiac failure (ROR: 4.04; 95%CI: 2.22-7.35), peripheral edema (ROR: 3.77; 95%CI: 2.17-6.55), tremor (ROR: 3.46; 95%CI: 2.00-6.01), pyrexia (ROR: 3.46; 95%CI: 2.00-6.01), and gait disturbance (ROR: 2.41; 95%CI: 1.29-4.52). CONCLUSIONS: Patients taking D-pen require close monitoring of renal function, blood counts, immunity, liver, cardiac function, and neurological function. D-pen suppresses immune system which maximizes the risk of infection.


Subject(s)
Adverse Drug Reaction Reporting Systems/statistics & numerical data , Chelating Agents/adverse effects , Penicillamine/adverse effects , Adolescent , Adult , Aged , Databases, Factual , Drug Monitoring/methods , Female , Humans , Male , Middle Aged , Pharmacovigilance , Retrospective Studies , United States , United States Food and Drug Administration , Young Adult
10.
Cardiovasc Res ; 117(5): 1358-1371, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33038226

ABSTRACT

AIMS: Prior studies have focused on the role of the kidney and vasculature in salt-induced modulation of blood pressure; however, recent data indicate that sodium accumulates in tissues and can activate immune cells. We sought to examine mechanisms by which salt causes activation of human monocytes both in vivo and in vitro. METHODS AND RESULTS: To study the effect of salt in human monocytes, monocytes were isolated from volunteers to perform several in vitro experiments. Exposure of human monocytes to elevated Na+ex vivo caused a co-ordinated response involving isolevuglandin (IsoLG)-adduct formation, acquisition of a dendritic cell (DC)-like morphology, expression of activation markers CD83 and CD16, and increased production of pro-inflammatory cytokines tumour necrosis factor-α, interleukin (IL)-6, and IL-1ß. High salt also caused a marked change in monocyte gene expression as detected by RNA sequencing and enhanced monocyte migration to the chemokine CC motif chemokine ligand 5. NADPH-oxidase inhibition attenuated monocyte activation and IsoLG-adduct formation. The increase in IsoLG-adducts correlated with risk factors including body mass index, pulse pressure. Monocytes exposed to high salt stimulated IL-17A production from autologous CD4+ and CD8+ T cells. In addition, to evaluate the effect of salt in vivo, monocytes and T cells isolated from humans were adoptively transferred to immunodeficient NSG mice. Salt feeding of humanized mice caused monocyte-dependent activation of human T cells reflected by proliferation and accumulation of T cells in the bone marrow. Moreover, we performed a cross-sectional study in 70 prehypertensive subjects. Blood was collected for flow cytometric analysis and 23Na magnetic resonance imaging was performed for tissue sodium measurements. Monocytes from humans with high skin Na+ exhibited increased IsoLG-adduct accumulation and CD83 expression. CONCLUSION: Human monocytes exhibit co-ordinated increases in parameters of activation, conversion to a DC-like phenotype and ability to activate T cells upon both in vitro and in vivo sodium exposure. The ability of monocytes to be activated by sodium is related to in vivo cardiovascular disease risk factors. We therefore propose that in addition to the kidney and vasculature, immune cells like monocytes convey salt-induced cardiovascular risk in humans.


Subject(s)
Lipid Metabolism/drug effects , Lipids , Monocytes/drug effects , NADPH Oxidases/metabolism , Sodium Chloride/pharmacology , Adoptive Transfer , Adult , Aged , Animals , Antigens, CD/metabolism , Cells, Cultured , Coculture Techniques , Cytokines/metabolism , Enzyme Activation , Female , GPI-Linked Proteins/metabolism , Humans , Immunoglobulins/metabolism , Inflammation Mediators/metabolism , Lymphocyte Activation , Male , Membrane Glycoproteins/metabolism , Mice, Transgenic , Middle Aged , Monocytes/enzymology , Monocytes/immunology , Monocytes/transplantation , Phenotype , Receptors, IgG/metabolism , Sodium Chloride, Dietary/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , CD83 Antigen
11.
Int J Mol Sci ; 21(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050457

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a neuronal growth and survival factor that harbors cardioprotective qualities that may attenuate dilated cardiomyopathy. In ~30% of the population, BDNF has a common, nonsynonymous single nucleotide polymorphism rs6265 (Val66Met), which might be correlated with increased risk of cardiovascular events. We previously showed that BDNF correlates with better cardiac function in Duchenne muscular dystrophy (DMD) patients. However, the effect of the Val66Met polymorphism on cardiac function has not been determined. The goal of the current study was to determine the effects of rs6265 on BDNF biomarker suitability and DMD cardiac functions more generally. We assessed cardiovascular and skeletal muscle function in human DMD patients segregated by polymorphic allele. We also compared echocardiographic, electrophysiologic, and cardiomyocyte contractility in C57/BL-6 wild-type mice with rs6265 polymorphism and in mdx/mTR (mDMD) mouse model of DMD. In human DMD patients, plasma BDNF levels had a positive correlation with left ventricular function, opposite to that seen in rs6265 carriers. There was also a substantial decrease in skeletal muscle function in carriers compared to the Val homozygotes. Surprisingly, the opposite was true when cardiac function of DMD carriers and non-carriers were compared. On the other hand, Val66Met wild-type mice had only subtle functional differences at baseline but significantly decreased cardiomyocyte contractility. Our results indicate that the Val66Met polymorphism alters myocyte contractility, conferring worse skeletal muscle function but better cardiac function in DMD patients. Moreover, these results suggest a mechanism for the relative preservation of cardiac tissues compared to skeletal muscle in DMD patients and underscores the complexity of BDNF signaling in response to mechanical workload.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Cardiomyopathy, Dilated/etiology , Cardiomyopathy, Dilated/metabolism , Genetic Predisposition to Disease , Myocytes, Cardiac/metabolism , Polymorphism, Single Nucleotide , Animals , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Echocardiography , Electrocardiography , Gene Expression Regulation , Genetic Association Studies , Humans , Mice , Mice, Transgenic , Myocardial Contraction
12.
Front Mol Biosci ; 7: 14, 2020.
Article in English | MEDLINE | ID: mdl-32118040

ABSTRACT

Purpose: Both cardiomyocytes and cardiac fibroblasts (CF) play essential roles in cardiac development, function, and remodeling. Properties of 3D co-cultures are incompletely understood. Hence, 3D co-culture of cardiomyocytes and CF was characterized, and selected features compared with single-type and 2D culture conditions. Methods: Human cardiomyocytes derived from induced-pluripotent stem cells (hiPSC-CMs) were obtained from Cellular Dynamics or Ncardia, and primary human cardiac fibroblasts from ScienCell. Cardiac spheroids were investigated using cryosections and whole-mount confocal microscopy, video motion analysis, scanning-, and transmission-electron microscopy (SEM, TEM), action potential recording, and quantitative PCR (qPCR). Results: Spheroids formed in hanging drops or in non-adhesive wells showed spontaneous contractions for at least 1 month with frequent media changes. SEM of mechanically opened spheroids revealed a dense inner structure and no signs of blebbing. TEM of co-culture spheroids at 1 month showed myofibrils, intercalated disc-like structures and mitochondria. Ultrastructural features were comparable to fetal human myocardium. We then assessed immunostained 2D cultures, cryosections of spheroids, and whole-mount preparations by confocal microscopy. CF in co-culture spheroids assumed a small size and shape similar to the situation in ventricular tissue. Spheroids made only of CF and cultured for 3 weeks showed no stress fibers and strongly reduced amounts of alpha smooth muscle actin compared to early spheroids and 2D cultures as shown by confocal microscopy, western blotting, and qPCR. The addition of CF to cardiac spheroids did not lead to arrhythmogenic effects as measured by sharp-electrode electrophysiology. Video motion analysis showed a faster spontaneous contraction rate in co-culture spheroids compared to pure hiPSC-CMs, but similar contraction amplitudes and kinetics. Spontaneous contraction rates were not dependent on spheroid size. Applying increasing pacing frequencies resulted in decreasing contraction amplitudes without positive staircase effect. Gene expression analysis of selected cytoskeleton and myofibrillar proteins showed more tissue-like expression patterns in co-culture spheroids than with cardiomyocytes alone or in 2D culture. Conclusion: We demonstrate that the use of 3D co-culture of hiPSC-CMs and CF is superior over 2D culture conditions for co-culture models and more closely mimicking the native state of the myocardium with relevance to drug development as well as for personalized medicine.

13.
mBio ; 11(2)2020 03 10.
Article in English | MEDLINE | ID: mdl-32156806

ABSTRACT

Frequent and excessive use of antibiotics primes patients to Clostridioides difficile infection (CDI), which leads to fatal pseudomembranous colitis, with limited treatment options. In earlier reports, we used a drug repurposing strategy and identified amoxapine (an antidepressant), doxapram (a breathing stimulant), and trifluoperazine (an antipsychotic), which provided significant protection to mice against lethal infections with several pathogens, including C. difficile However, the mechanisms of action of these drugs were not known. Here, we provide evidence that all three drugs offered protection against experimental CDI by reducing bacterial burden and toxin levels, although the drugs were neither bacteriostatic nor bactericidal in nature and had minimal impact on the composition of the microbiota. Drug-mediated protection was dependent on the presence of the microbiota, implicating its role in evoking host defenses that promoted protective immunity. By utilizing transcriptome sequencing (RNA-seq), we identified that each drug increased expression of several innate immune response-related genes, including those involved in the recruitment of neutrophils, the production of interleukin 33 (IL-33), and the IL-22 signaling pathway. The RNA-seq data on selected genes were confirmed by quantitative real-time PCR (qRT-PCR) and protein assays. Focusing on amoxapine, which had the best anti-CDI outcome, we demonstrated that neutralization of IL-33 or depletion of neutrophils resulted in loss of drug efficacy. Overall, our lead drugs promote disease alleviation and survival in the murine model through activation of IL-33 and by clearing the pathogen through host defense mechanisms that critically include an early influx of neutrophils.IMPORTANCEClostridioides difficile is a spore-forming anaerobic bacterium and the leading cause of antibiotic-associated colitis. With few therapeutic options and high rates of disease recurrence, the need to develop new treatment options is urgent. Prior studies utilizing a repurposing approach identified three nonantibiotic Food and Drug Administration-approved drugs, amoxapine, doxapram, and trifluoperazine, with efficacy against a broad range of human pathogens; however, the protective mechanisms remained unknown. Here, we identified mechanisms leading to drug efficacy in a murine model of lethal C. difficile infection (CDI), advancing our understanding of the role of these drugs in infectious disease pathogenesis that center on host immune responses to C. difficile Overall, these studies highlight the crucial involvement of innate immune responses, as well as the importance of immunomodulation as a potential therapeutic option to combat CDI.


Subject(s)
Amoxapine/therapeutic use , Clostridium Infections/drug therapy , Doxapram/therapeutic use , Immunity, Innate , Microbiota/drug effects , Trifluoperazine/therapeutic use , Animals , Clostridioides difficile/drug effects , Drug Repositioning , Female , Immunomodulation , Male , Mice , Mice, Inbred C57BL , Microbiota/immunology , RNA-Seq , Specific Pathogen-Free Organisms
15.
J Am Heart Assoc ; 8(21): e011902, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31662020

ABSTRACT

Background Muscular dystrophy (MD) causes a progressive cardiomyopathy characterized by diffuse fibrosis, arrhythmia, heart failure, and early death. Activation of the thromboxane-prostanoid receptor (TPr) increases calcium transients in cardiomyocytes and is proarrhythmic and profibrotic. We hypothesized that TPr activation contributes to the cardiac phenotype of MD, and that TPr antagonism would improve cardiac fibrosis and function in preclinical models of MD. Methods and Results Three different mouse models of MD (mdx/utrn double knockout, second generation mdx/mTR double knockout, and delta-sarcoglycan knockout) were given normal drinking water or water containing 25 mg/kg per day of the TPr antagonist ifetroban, beginning at weaning. After 6 months (10 weeks for mdx/utrn double knockout), mice were evaluated for cardiac and skeletal muscle function before euthanization. There was a 100% survival rate of ifetroban-treated mice to the predetermined end point, compared with 60%, 43%, and 90% for mdx/utrn double knockout, mdx/mTR double knockout, and delta-sarcoglycan knockout mice, respectively. TPr antagonism improved cardiac output in mdx/utrn double knockout and mdx/mTR mice, and normalized fractional shortening, ejection fraction, and other parameters in delta-sarcoglycan knockout mice. Cardiac fibrosis in delta-sarcoglycan knockout was reduced with TPr antagonism, which also normalized cardiac expression of claudin-5 and neuronal nitric oxide synthase proteins and multiple signature genes of Duchenne MD. Conclusions TPr antagonism reduced cardiomyopathy and spontaneous death in mouse models of Duchenne and limb-girdle MD. Based on these studies, ifetroban and other TPr antagonists could be novel therapeutics for treatment of the cardiac phenotype in patients with MD.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Muscular Dystrophy, Duchenne/complications , Oxazoles/therapeutic use , Prostaglandin Antagonists/therapeutic use , Receptors, Thromboxane/antagonists & inhibitors , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred mdx , Mice, Knockout , Random Allocation
16.
JACC Basic Transl Sci ; 4(1): 41-53, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847418

ABSTRACT

The role of the transforming growth factor (TGF)-ß pathway in myocardial fibrosis is well recognized. However, the precise role of this signaling axis in cardiomyocyte (CM) biology is not defined. In TGF-ß signaling, SMAD4 acts as the central intracellular mediator. To investigate the role of TGF-ß signaling in CM biology, the authors deleted SMAD4 in adult mouse CMs. We demonstrate that CM-SMAD4-dependent TGF-ß signaling is critical for maintaining cardiac function, sarcomere kinetics, ion-channel gene expression, and cardiomyocyte survival. Thus, our findings raise a significant concern regarding the therapeutic approaches that rely on systemic inhibition of the TGF-ß pathway for the management of myocardial fibrosis.

17.
Cardiovasc Res ; 115(5): 966-977, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30629146

ABSTRACT

AIMS: Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myelogenous leukaemia (CML). However, cardiotoxicity of these agents remains a serious concern. The underlying mechanism of these adverse cardiac effects is largely unknown. Delineation of the underlying mechanisms of TKIs associated cardiac dysfunction could guide potential prevention strategies, rescue approaches, and future drug design. This study aimed to determine the cardiotoxic potential of approved CML TKIs, define the associated signalling mechanism and identify potential alternatives. METHODS AND RESULTS: In this study, we employed a zebrafish transgenic BNP reporter line that expresses luciferase under control of the nppb promoter (nppb:F-Luciferase) to assess the cardiotoxicity of all approved CML TKIs. Our in vivo screen identified ponatinib as the most cardiotoxic agent among the approved CML TKIs. Then using a combination of zebrafish and isolated neonatal rat cardiomyocytes, we delineated the signalling mechanism of ponatinib-induced cardiotoxicity by demonstrating that ponatinib inhibits cardiac prosurvival signalling pathways AKT and extra-cellular-signal-regulated kinase (ERK), and induces cardiomyocyte apoptosis. As a proof of concept, we augmented AKT and ERK signalling by administration of Neuregulin-1ß (NRG-1ß), and this prevented ponatinib-induced cardiomyocyte apoptosis. We also demonstrate that ponatinib-induced cardiotoxicity is not mediated by inhibition of fibroblast growth factor signalling, a well-known target of ponatinib. Finally, our comparative profiling for the cardiotoxic potential of CML approved TKIs, identified asciminib (ABL001) as a potentially much less cardiotoxic treatment option for CML patients with the T315I mutation. CONCLUSION: Herein, we used a combination of in vivo and in vitro methods to systematically screen CML TKIs for cardiotoxicity, identify novel molecular mechanisms for TKI cardiotoxicity, and identify less cardiotoxic alternatives.


Subject(s)
Antineoplastic Agents/toxicity , Heart Diseases/chemically induced , Imidazoles/toxicity , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Myocytes, Cardiac/drug effects , Protein Kinase Inhibitors/toxicity , Pyridazines/toxicity , Signal Transduction/drug effects , Animals , Animals, Genetically Modified , Apoptosis/drug effects , Cardiotoxicity , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/prevention & control , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Niacinamide/analogs & derivatives , Niacinamide/toxicity , Proof of Concept Study , Proto-Oncogene Proteins c-akt/metabolism , Pyrazoles/toxicity , Rats , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism
18.
Br J Pharmacol ; 176(12): 2015-2027, 2019 06.
Article in English | MEDLINE | ID: mdl-29774543

ABSTRACT

BACKGROUND AND PURPOSE: Monocytes play a critical role in hypertension. The purpose of our study was to use an unbiased approach to determine whether hypertensive individuals on conventional therapy exhibit an altered monocyte gene expression profile and to perform validation studies of selected genes to identify novel therapeutic targets for hypertension. EXPERIMENTAL APPROACH: Next generation RNA sequencing identified differentially expressed genes in a small discovery cohort of normotensive and hypertensive individuals. Several of these genes were further investigated for association with hypertension in multiple validation cohorts using qRT-PCR, regression analysis, phenome-wide association study and case-control analysis of a missense polymorphism. KEY RESULTS: We identified 60 genes that were significantly differentially expressed in hypertensive monocytes, many of which are related to IL-1ß. Uni- and multivariate regression analyses of the expression of these genes with mean arterial pressure (MAP) revealed four genes that significantly correlated with MAP in normotensive and/or hypertensive individuals. Of these, lactoferrin (LTF), peptidoglycan recognition protein 1 and IL-18 receptor accessory protein (IL18RAP) remained significantly elevated in peripheral monocytes of hypertensive individuals in a separate validation cohort. Interestingly, IL18RAP expression associated with MAP in a cohort of African Americans. Furthermore, homozygosity for a missense single nucleotide polymorphism in LTF that decreases antimicrobial function and increases protein levels (rs1126478) was over-represented in patients with hypertension relative to controls (odds ratio 1.16). CONCLUSIONS AND IMPLICATIONS: These data demonstrate that monocytes exhibit enhanced pro-inflammatory gene expression in hypertensive individuals and identify IL18RAP and LTF as potential novel mediators of human hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.


Subject(s)
Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Lactoferrin/pharmacology , Monocytes/metabolism , Receptors, Interleukin-18/genetics , Black or African American , Blood Pressure/drug effects , Blood Pressure/immunology , Case-Control Studies , Gene Expression Profiling , Humans , Hypertension/immunology , Multivariate Analysis , Receptors, Interleukin-18/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
19.
Ann Thorac Surg ; 105(4): 1144-1151, 2018 04.
Article in English | MEDLINE | ID: mdl-29248417

ABSTRACT

BACKGROUND: We hypothesized that gene expression profiles of mitral valve (MV) leaflets from patients with Barlow's disease (BD) are distinct from those with fibroelastic deficiency (FED). METHODS: MVs were obtained from patients with BD (7 men, 3 women; 61.4 ± 12.7 years old) or FED (6 men, 5 women; 54.5 ± 6.0 years old) undergoing operations for severe mitral regurgitation (MR). Normal MVs were obtained from 6 donor hearts unmatched for transplant (3 men, 3 women; 58.3 ± 7.5 years old), and gene expression was assessed using cDNA microarrays. Select transcripts were validated by quantitative reverse-transcription polymerase chain reaction, followed by an assessment of protein levels by immunostaining. RESULTS: The global gene expression profile for BD was clearly distinct from normal and FED groups. A total of 4,684 genes were significantly differential (fold-difference >1.5, p < 0.05) among the three groups, 1,363 of which were commonly altered in BD and FED compared with healthy individuals (eg TGFß2 [transforming growth factor ß2] and TGFß3 were equally upregulated in BD and FED). Most interesting were 329 BD-specific genes, including ADAMTS5 (a disintegrin-like and metalloprotease domain with thrombospondin-type 5), which was uniquely downregulated in BD based on microarrays and quantitative reverse-transcription polymerase chain reaction. Consistent with this finding, the ADAMTS5 substrate versican was increased in BD and conversely lower in FED. CONCLUSIONS: MV leaflets in BD and FED exhibit distinct gene expression patterns, suggesting different pathophysiologic mechanisms are involved in leaflet remodeling. Moreover, downregulation of ADAMTS5 in BD, along with the accumulation of its substrate versican in the valvular extracellular matrix, might contribute to leaflet thickening and enlargement.


Subject(s)
ADAMTS5 Protein/genetics , Mitral Valve Insufficiency/genetics , Mitral Valve Prolapse/genetics , Versicans/metabolism , ADAMTS5 Protein/metabolism , Adult , Aged , Case-Control Studies , Female , Humans , Male , Microarray Analysis , Middle Aged , Mitral Valve Insufficiency/metabolism , Mitral Valve Insufficiency/pathology , Mitral Valve Prolapse/metabolism , Mitral Valve Prolapse/pathology , Proteolysis , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome
20.
BMC Med Genomics ; 10(1): 21, 2017 04 08.
Article in English | MEDLINE | ID: mdl-28390424

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, which codes for the dystrophin protein. While progress has been made in defining the molecular basis and pathogenesis of DMD, major gaps remain in understanding mechanisms that contribute to the marked delay in cardiac compared to skeletal muscle dysfunction. METHODS: To address this question, we analyzed cardiac and skeletal muscle tissue microarrays from golden retriever muscular dystrophy (GRMD) dogs, a genetically and clinically homologous model for DMD. A total of 15 dogs, 3 each GRMD and controls at 6 and 12 months plus 3 older (47-93 months) GRMD dogs, were assessed. RESULTS: GRMD dogs exhibited tissue- and age-specific transcriptional profiles and enriched functions in skeletal but not cardiac muscle, consistent with a "metabolic crisis" seen with DMD microarray studies. Most notably, dozens of energy production-associated molecules, including all of the TCA cycle enzymes and multiple electron transport components, were down regulated. Glycolytic and glycolysis shunt pathway-associated enzymes, such as those of the anabolic pentose phosphate pathway, were also altered, in keeping with gene expression in other forms of muscle atrophy. On the other hand, GRMD cardiac muscle genes were enriched in nucleotide metabolism and pathways that are critical for neuromuscular junction maintenance, synaptic function and conduction. CONCLUSIONS: These findings suggest differential metabolic dysfunction may contribute to distinct pathological phenotypes in skeletal and cardiac muscle.


Subject(s)
Dog Diseases/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Myocardium/metabolism , Animals , Dog Diseases/metabolism , Dogs , Gene Expression Profiling , Glycolysis , Muscular Dystrophy, Duchenne/metabolism , Mutation , Oligonucleotide Array Sequence Analysis , Organ Specificity , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...