Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Science ; 374(6564): 172-178, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34618574

ABSTRACT

Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.

3.
ACS Omega ; 6(17): 11614-11627, 2021 May 04.
Article in English | MEDLINE | ID: mdl-34056317

ABSTRACT

Nanocomposite hydrogels are attracting significant interest due to their potential use in drug delivery systems and tissue scaffolds. Stimuli-responsive hydrogel nanocomposites are of particular interest due to sustained release of therapeutic agents from the hydrogel. However, challenges such as controlled release of therapeutic agents exist because of limited understanding of the interactions between the therapeutic agent and the hydrogel. To investigate the interaction, we synthesize a hydrogel nanocomposite by crosslinking the hydrogel precursors (tetrazine-modified polyethylene glycol and norbornene-modified hyaluronic acid) using click chemistry while bovine serum albumin-capped silver nanoparticles were encapsulated in situ in the matrix. The interaction between the nanoparticles and the hydrogel was studied by a combination of spectroscopic techniques. X-ray photoelectron spectroscopy results suggest that the hydrogel molecule rearranges so that polyethylene glycol is pointing up toward the surface while hyaluronic acid folds to interact with bovine serum albumin of the nanoparticles. Hyaluronic acid, facing inward, may interact with the nanoparticle via hydrogen bonding. The hydrogel nanocomposite showed antibacterial activity against Gram-positive/Gram-negative bactericides, supporting time-based nanoparticle release results. Our findings about interactions between the nanoparticles and the hydrogel can be useful in the formulation of next generation of hydrogel nanocomposites.

4.
Nat Nanotechnol ; 16(8): 902-910, 2021 08.
Article in English | MEDLINE | ID: mdl-33972758

ABSTRACT

Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.

5.
J Vac Sci Technol A ; 38(6): 063208, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33281279

ABSTRACT

We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration.

6.
Proc Natl Acad Sci U S A ; 117(26): 14712-14720, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32554498

ABSTRACT

Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C-S and O-S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g-1 (based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg-1 The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.

8.
Article in English | MEDLINE | ID: mdl-31579351

ABSTRACT

Over the past three decades, the widespread utility and applicability of X-ray photoelectron spectroscopy (XPS) in research and applications has made it the most popular and widely used method of surface analysis. Associated with this increased use has been an increase in the number of new or inexperienced users which has led to erroneous uses and misapplications of the method. This article is the first in a series of guides assembled by a committee of experienced XPS practitioners that are intended to assist inexperienced users by providing information about good practices in the use of XPS. This first guide outlines steps appropriate for determining whether XPS is capable of obtaining the desired information, identifies issues relevant to planning, conducting and reporting an XPS measurement, and identifies sources of practical information for conducting XPS measurements. Many of the topics and questions addressed in this article also apply to other surface-analysis techniques.

9.
J Am Chem Soc ; 141(34): 13516-13524, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31362493

ABSTRACT

Nucleation underlies the formation of many liquid-phase synthetic and natural materials with applications in materials chemistry, geochemistry, biophysics, and structural biology. Most liquid-phase nucleation processes are heterogeneous, occurring at specific nucleation sites at a solid-liquid interface; however, the chemical and topographical identity of these nucleation sites and how nucleation kinetics vary from site-to-site remain mysterious. Here we utilize in situ liquid cell electron microscopy to unveil counterintuitive nanoscale nonuniformities in heterogeneous nucleation kinetics on a macroscopically uniform solid-liquid interface. Time-resolved in situ electron microscopy imaging of silver nanoparticle nucleation at a water-silicon nitride interface showed apparently randomly located nucleation events at the interface. However, nanometric maps of local nucleation kinetics uncovered nanoscale interfacial domains with either slow or rapid nucleation. Interestingly, the interfacial domains vanished at high supersaturation ratio, giving way to rapid spatially uniform nucleation kinetics. Atomic force microscopy and nanoparticle labeling experiments revealed a topographically flat, chemically heterogeneous interface with nanoscale interfacial domains of functional groups similar in size to those observed in the nanometric nucleation maps. These results, along with a semiquantitative nucleation model, indicate that a chemically nonuniform interface presenting different free energy barriers to heterogeneous nucleation underlies our observations of nonuniform nucleation kinetics. Overall, our results introduce a new imaging modality, nanometric nucleation mapping, and provide important new insights into the impact of surface chemistry on microscopic spatial variations in heterogeneous nucleation kinetics that have not been previously observed.


Subject(s)
Metal Nanoparticles/chemistry , Silicon Compounds/chemistry , Silver/chemistry , Water/chemistry , Kinetics , Metal Nanoparticles/ultrastructure , Microscopy, Atomic Force , Microscopy, Electron , Surface Properties , Thermodynamics
10.
Nat Chem ; 11(9): 789-796, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31427766

ABSTRACT

The importance of the solid-electrolyte interphase (SEI) for reversible operation of Li-ion batteries has been well established, but the understanding of its chemistry remains incomplete. The current consensus on the identity of the major organic SEI component is that it consists of lithium ethylene di-carbonate (LEDC), which is thought to have high Li-ion conductivity, but low electronic conductivity (to protect the Li/C electrode). Here, we report on the synthesis and structural and spectroscopic characterizations of authentic LEDC and lithium ethylene mono-carbonate (LEMC). Direct comparisons of the SEI grown on graphite anodes suggest that LEMC, instead of LEDC, is likely to be the major SEI component. Single-crystal X-ray diffraction studies on LEMC and lithium methyl carbonate (LMC) reveal unusual layered structures and Li+ coordination environments. LEMC has Li+ conductivities of >1 × 10-6 S cm-1, while LEDC is almost an ionic insulator. The complex interconversions and equilibria of LMC, LEMC and LEDC in dimethyl sulfoxide solutions are also investigated.

11.
Radiat Res ; 190(3): 309-321, 2018 09.
Article in English | MEDLINE | ID: mdl-29912620

ABSTRACT

During the pulsed-electron beam direct grafting of neat styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) substrate, the radiolytically-produced styryl and carbon-centered FEP radicals undergo various desired and undesired competing reactions. In this study, a high-dose rate is used to impede the undesired free radical homopolymerization of styrene and ensure uniform covalent grafting through 125-µm FEP films. This outweighs the enhancement of the undesired crosslinking reactions of carbon-centered FEP radicals and the dimerization of the styryl radicals. The degree of uniform grafting through 125-µm FEP films increases from ≈8%, immediately after pulsed electron irradiation to 33% with the subsequent thermal treatment exceeding the glass transition temperature of FEP of 39°C. On the contrary, steady-state radiolysis using 60Co gamma radiolysis, shows that the undesired homopolymerization of the styrene has become the predominant reaction with a negligible degree of grafting. Time-resolved fast kinetic measurements on pulsed neat styrene show that the styryl radicals undergo fast decays via propagation homopolymerization and termination reactions at an observed reaction rate constant of 5 × 108 l · mol-1 · s-1. The proton conductivity of 25-µm film at 80°C is 0.29 ± 0.01 s cm-1 and 0.007 s cm-1 at relative humidity of 92% and 28%, respectively. The aims of this work are: 1. electrolyte membranes are prepared via grafting initiated by a pulsed electron beam; 2. postirradiation heat-treated membranes are uniformly grafted, ideal for industry; 3. High dose rate is the primary parameter to promote the desired reactions; 4. measurement of kinetics of undesired radiation-induced styrene homopolymerization; and 5. The conductivity of prepared membranes is on par or higher than industry standards.


Subject(s)
Electrolytes/radiation effects , Membranes, Artificial , Polymerization/radiation effects , Polymers/chemistry , Electrolytes/chemistry , Electrons , Free Radicals/chemistry , Free Radicals/radiation effects , Gamma Rays , Kinetics , Polymers/radiation effects , Polytetrafluoroethylene/analogs & derivatives , Polytetrafluoroethylene/chemistry , Polytetrafluoroethylene/radiation effects , Styrene/chemistry , Styrene/radiation effects
12.
ACS Appl Mater Interfaces ; 10(29): 24554-24563, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29956907

ABSTRACT

Lithium-sulfur (Li-S) batteries suffer from shuttle reactions during electrochemical cycling, which cause the loss of active material sulfur from sulfur-carbon cathodes, and simultaneously incur the corrosion and degradation of the lithium metal anode by forming passivation layers on its surface. These unwanted reactions therefore lead to the fast failure of batteries. The preservation of the highly reactive lithium metal anode in sulfur-containing electrolytes has been one of the main challenges for Li-S batteries. In this study, we systematically controlled and optimized the formation of a smooth and uniform solid electrolyte interphase (SEI) layer through electrochemical pretreatment of the Li metal anode under controlled current densities. A distinct improvement of battery performance in terms of specific capacity and power capability was achieved in charge-discharge cycling for Li-S cells with pretreated Li anodes compared to pristine untreated ones. Importantly, at a higher power density (1 C rate, 3 mA cm-2), the Li-S cells with pretreated Li anodes protected by a controlled elastomer (Li-Protected-by-Elastomer, LPE)) show the suppression of the Li dendrite growth and exhibit 3-4 times higher specific capacity than the untreated ones after 100 electrochemical cycles. The formation of such a controlled uniform SEI was confirmed, and its surface chemistry, morphology, and electrochemical properties were characterized by X-ray photoelectron spectroscopy, focused-ion beam cross sectioning, and scanning electron microscopy. Adequate pretreatment current density and time are critical in order to form a continuous and uniform SEI, along with good Li-ion transport property.

13.
Angew Chem Int Ed Engl ; 57(28): 8567-8571, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29791780

ABSTRACT

Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li3 PS4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB.

14.
Proc Natl Acad Sci U S A ; 115(9): 2004-2009, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440381

ABSTRACT

Organic compounds are desirable for sustainable Li-ion batteries (LIBs), but the poor cycle stability and low power density limit their large-scale application. Here we report a family of organic compounds containing azo group (N=N) for reversible lithiation/delithiation. Azobenzene-4,4'-dicarboxylic acid lithium salt (ADALS) with an azo group in the center of the conjugated structure is used as a model azo compound to investigate the electrochemical behaviors and reaction mechanism of azo compounds. In LIBs, ADALS can provide a capacity of 190 mAh g-1 at 0.5 C (corresponding to current density of 95 mA g-1) and still retain 90%, 71%, and 56% of the capacity when the current density is increased to 2 C, 10 C, and 20 C, respectively. Moreover, ADALS retains 89% of initial capacity after 5,000 cycles at 20 C with a slow capacity decay rate of 0.0023% per cycle, representing one of the best performances in all organic compounds. Superior electrochemical behavior of ADALS is also observed in Na-ion batteries, demonstrating that azo compounds are universal electrode materials for alkali-ion batteries. The highly reversible redox chemistry of azo compounds to alkali ions was confirmed by density-functional theory (DFT) calculations. It provides opportunities for developing sustainable batteries.

15.
Phys Chem Chem Phys ; 20(4): 2517-2526, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29313861

ABSTRACT

Batteries based on magnesium chemistry are being widely investigated as an alternative energy storage system to replace lithium-ion batteries. Mg batteries have multiple challenges, especially on the cathode side. The divalent Mg ion has slow insertion kinetics in many metal oxide cathodes conventionally used in Li-ion batteries. One solution that has been explored is adding water molecules into an organic electrolyte, which has been shown to aid in Mg insertion and improve performance of manganese oxide (MnO2) cathodes. While there have been studies on Mg insertion mechanisms into MnO2 in solely aqueous or organic electrolytes for some crystalline MnO2 polymorphs, our work is focused on water-containing organic electrolyte, where an H2O to Mg ratio of 6 : 1 is present. In this study, we report results based on ex situ XPS experiments, including both angle resolved and depth profiling studies to assess the surface reactions and determine the mechanism of Mg insertion into an amorphous, electrodeposited MnO2 cathode. We propose that in this mixed electrolyte system, there is a combined insertion/conversion reaction mechanism whereby Mg and H2O molecules co-insert into the MnO2 structure and a reaction between H2O and Mg creates an observable Mg(OH)2 layer at the surface of the MnO2. A more full understanding of the role of the water molecules is important to aid in the future design of cathode materials, especially when determining potential ways to integrate metal oxides in Mg batteries.

16.
Angew Chem Int Ed Engl ; 55(34): 9898-901, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27417442

ABSTRACT

Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.

17.
Anal Chem ; 88(10): 5152-8, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27058399

ABSTRACT

Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited.

18.
Langmuir ; 32(17): 4370-81, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27055091

ABSTRACT

Polydopamine coatings are of interest due to the fact that they can promote adhesion to a broad range of materials and can enable a variety of applications. However, the polydopamine-substrate interaction is often noncovalent. To broaden the potential applications of polydopamine, we show the incorporation of 3-aminopropyltriethoxysilane (APTES), a traditional coupling agent capable of covalent bonding to a broad range of organic and inorganic surfaces, into polydopamine coatings. High energy X-ray photoelectron spectroscopy (HE-XPS), conventional XPS, near-edge X-ray absorption fine structure (NEXAFS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), and ellipsometry measurements were used to investigate changes in coating chemistry and thickness, which suggest covalent incorporation of APTES into polydopamine. These coatings can be deposited either in Tris buffer or by using an aqueous APTES solution as a buffer without Tris. APTES-dopamine hydrochloride deposition from solutions with molar ratios between 0:1 and 10:1 allowed us to control the coating composition across a broad range.

19.
Ind Eng Chem Res ; 55(15): 4179-5214, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-29720786

ABSTRACT

In order to test the effectiveness of oxalate-based polymeric adsorbents in the recovery of uranium from seawater, diallyl oxalate (DAOx) was grafted onto nylon 6 fabrics by exposing the fabric, immersed in pure liquid DAOx or in a surfactant-stabilized dispersion of DAOx in water, to electron beam or gamma radiation. Following drying and weighing to determine the degree of grafting (DoG), the presence of oxalate in the fabrics was verified using XPS. Zeta potential measurements showed the fabric surfaces to be negatively charged. The fabrics were tested by rotating them for 7 days in a rotary agitator with actual seawater spiked with 0.2 or 1.0 mg∙L-1 uranium. The fraction of uranium in the solution which was removed due to uptake on the fabrics was found to rise with increasing DoG at both uranium concentrations. EDS measurements were used to map the distribution of adsorbed uranium on the polymeric fibers.

20.
Adv Mater ; 27(23): 3473-83, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25925023

ABSTRACT

A single-material battery is prepared using Li10GeP2S12 as the electrolyte, anode, and cathode, based on the Li-S and Ge-S components in Li10GeP2S12 acting as the active centers for its cathode and anode performance, respectively. The single-Li10GeP2S12 battery exhibits a remarkably low interfacial resistance due to the improvement of interfacial contact and interactions, and the suppression of interfacial strain/stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...