Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
Chem Commun (Camb) ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747262

ABSTRACT

Leveraging microgram-level techniques, we here present the first transplutonium bis-pentatungstate complex: NaCs8Cm(W5O18)2·14H2O (CmW5). Single crystal XRD, Raman, and fluorescence characterization show significant differences relative to analogous lanthanide compounds. The study reveals the unsuspected impact of counterions on fluorescence and vibrational modes of the curium complex and its lanthanide counterparts.

2.
S Afr J Physiother ; 80(1): 1981, 2024.
Article in English | MEDLINE | ID: mdl-38322653

ABSTRACT

Background: The use of standardised assessment tools is a fundamental aspect of good clinical practice. However, to our knowledge, no study has documented the use of standardised assessment tools in physiotherapy in French-speaking sub-Saharan Africa. Objectives: Documenting the use of standardised outcome measures in physiotherapy in French-speaking sub-Saharan Africa. Method: Our cross-sectional survey used an online self-questionnaire on facilitators and barriers to the use of standardised outcome measures, distributed to physiotherapists in French-speaking sub-Saharan Africa. Results: A total of 241 physiotherapists working in French-speaking sub-Saharan Africa responded to the survey. The most represented countries were Benin (36.9%), Cameroon (14.1%), and Burkina Faso (10.8%). Although 99% of participants reported using standardised outcome measures, only 27% of the respondents used them systematically (all the time). The most reported facilitators included the recognition that standardised outcome measures help to determine whether treatment is effective, help to guide care, and improve communication with patients. The most significant barriers were the lack of time, unavailability of the standardised outcome measures, and non-sensitivity of measures to patients' cultural and ethnic concerns. There was a higher proportion of use in the middle age group (30-40) (p = 0.02) and a lower proportion of use in physiotherapists simultaneously working in public and private sectors (p = 0.05). Conclusion: Standardised outcome measures are still not widely used by physiotherapists in French-speaking sub-Saharan Africa. Clinical implications: The perceived barriers and facilitators could help to develop strategies to improve the systematic use of outcome measures in French-speaking sub-Saharan Africa.

3.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37897703

ABSTRACT

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Subject(s)
Actinoid Series Elements , Metalloproteins , Chelating Agents , Actinoid Series Elements/chemistry , Minerals , Calcium Carbonate , Carbonates
4.
Int J Rehabil Res ; 46(3): 221-229, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37334800

ABSTRACT

This cross-sectional study aimed to evaluate the effect of visual feedback, age and movement repetition on the upper limb (UL) accuracy and kinematics during a reaching task in immersive virtual reality (VR). Fifty-one healthy participants were asked to perform 25 trials of a reaching task in immersive VR with and without visual feedback of their hand. They were instructed to place, as accurately and as fast as possible, a controller held in their non-dominant hand in the centre of a virtual red cube of 3 cm side length. For each trial, the end-point error (distance between the tip of the controller and the centre of the cube), a coefficient of linearity (CL), the movement time (MT), and the spectral arc length of the velocity signal (SPARC), which is a movement smoothness index, were calculated. Multivariate analyses of variance were conducted to assess the influence of visual feedback, age and trial repetition on the average end-point error, SPARC, CL and MT, and their time course throughout the 25 trials. Providing visual feedback of the hand reduced average end-point error ( P  < 0.001) and MT ( P  = 0.044), improved SPARC ( P  < 0.001) but did not affect CL ( P  = 0.07). Younger participants obtained a lower mean end-point error ( P  = 0.037), a higher SPARC ( P  = 0.021) and CL ( P  = 0.013). MT was not affected by age ( P  = 0.671). Trial repetition increased SPARC ( P  < 0.001) and CL ( P  < 0.001), and reduced MT ( P  = 0.001) but did not affect end-point error ( P  = 0.608). In conclusion, the results of this study demonstrated that providing visual feedback of the hand and being younger improves UL accuracy and movement smoothness in immersive VR. UL kinematics but not accuracy can be improved with more trial repetitions. These findings could guide the future development of protocols in clinical rehabilitation and research.


Subject(s)
Feedback, Sensory , Virtual Reality , Humans , Adult , Biomechanical Phenomena , Cross-Sectional Studies , Upper Extremity
6.
Inorg Chem ; 62(16): 6242-6254, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36580490

ABSTRACT

Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs). We provide the first NMR measurements on americium-POM and curium-POM complexes, using one-dimensional (1D) 31P NMR, variable-temperature NMR, and spin-lattice relaxation time (T1) experiments. The proposed POM-NMR approach allows for the study of trivalent f-elements even when only microgram amounts are available and in phosphate-containing solutions where f-elements are typically insoluble. The solution-state speciation of trivalent americium, curium, plus multiple lanthanide ions (La3+, Nd3+, Sm3+, Eu3+, Yb3+, and Lu3+), in the presence of the model POM ligand PW11O397- was elucidated and revealed the concurrent formation of two stable complexes, [MIII(PW11O39)(H2O)x]4- and [MIII(PW11O39)2]11-. Interconversion reaction constants, reaction enthalpies, and reaction entropies were derived from the NMR data. The NMR results also provide experimental evidence of the weakly paramagnetic nature of the Am3+ and Cm3+ ions in solution. Furthermore, the study reveals a previously unnoticed periodicity break along the f-element series with the reversal of T1 relaxation times of the 1:1 and 1:2 complexes and the preferential formation of the long T1 species for the early lanthanides versus the short T1 species for the late lanthanides, americium, and curium. Given the broad variety of POM ligands that exist, with many of them containing NMR-active nuclei, the combined POM-NMR approach reported here opens a new avenue to investigate difficult-to-study elements such as heavy actinides and other radionuclides.

8.
Nat Chem ; 14(12): 1357-1366, 2022 12.
Article in English | MEDLINE | ID: mdl-36050378

ABSTRACT

The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties. Three curium-POM complexes were prepared, using just 1-10 µg per synthesis of the rare isotope 248Cm3+, and characterized by single-crystal X-ray diffraction, showing an eight-coordinated Cm3+ centre. Moreover, spectrophotometric, fluorescence, NMR and Raman analyses of several f-block element-POM complexes, including 243Am3+ and 248Cm3+, showed otherwise unnoticeable differences between their solution versus solid-state chemistry, and actinide versus lanthanide behaviour. This POM-driven strategy represents a viable path to isolate even rarer complexes, notably with actinium or transcalifornium elements.


Subject(s)
Coordination Complexes , Ligands , Anions , Crystallography, X-Ray , Isotopes
9.
Chem Sci ; 13(20): 6054-6066, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35685815

ABSTRACT

Developing chelators that combine high affinity and selectivity for lanthanides and/or actinides is paramount for numerous industries, including rare earths mining, nuclear waste management, and cancer medicine. In particular, achieving selectivity between actinides and lanthanides is notoriously difficult. The protein lanmodulin (LanM) is one of Nature's most selective chelators for trivalent actinides and lanthanides. However, mechanistic understanding of LanM's affinity and selectivity for f-elements remains limited. In order to decipher, and possibly improve, the features of LanM's metal-binding sites that contribute to this actinide/lanthanide selectivity, we characterized five LanM variants, substituting the aspartate residue at the 9th position of each metal-binding site with asparagine, histidine, alanine, methionine, and selenomethionine. Spectroscopic measurements with lanthanides (Nd3+ and Eu3+) and actinides (243Am3+ and 248Cm3+) reveal that, contrary to the behavior of small chelator complexes, metal-coordinated water molecules enhance LanM's affinity for f-elements and pH-stability of its complexes. Furthermore, the results show that the native aspartate does not coordinate the metal directly but rather hydrogen bonds to coordinated solvent. By tuning this first-sphere/second-sphere interaction, the asparagine variant nearly doubles LanM's selectivity for actinides versus lanthanides. This study not only clarifies the essential role of coordinated solvent for LanM's physiological function and separation applications, but it also demonstrates that LanM's preference for actinides over lanthanides can be further improved. More broadly, it demonstrates how biomolecular scaffolds possess an expanded repertoire of tunable interactions compared to most small-molecule ligands - providing an avenue for high-performance LanM-based actinide/lanthanide separation methods and bio-engineered chelators optimized for specific medical isotopes.

10.
J Synchrotron Radiat ; 29(Pt 2): 315-322, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254293

ABSTRACT

The solution-state interactions of plutonium and berkelium with the octadentate chelator 3,4,3-LI(1,2-HOPO) (343-HOPO) were investigated and characterized by X-ray absorption spectroscopy, which revealed in situ reductive decomposition of the tetravalent species of both actinide metals to yield Pu(III) and Bk(III) coordination complexes. X-ray absorption near-edge structure (XANES) measurements were the first indication of in situ synchrotron redox chemistry as the Pu threshold and white-line position energies for Pu-343-HOPO were in good agreement with known diagnostic Pu(III) species, whereas Bk-343-HOPO results were found to mirror the XANES behavior of Bk(III)-DTPA. Extended X-ray absorption fine structure results revealed An-OHOPO bond distances of 2.498 (5) and 2.415 (2) Šfor Pu and Bk, respectively, which match well with bond distances obtained for trivalent actinides and 343-HOPO via density functional theory calculations. Pu(III)- and Bk(III)-343-HOPO data also provide initial insight into actinide periodicity as they can be compared with previous results with Am(III)-, Cm(III)-, Cf(III)-, and Es(III)-343-HOPO, which indicate there is likely an increase in 5f covalency and heterogeneity across the actinide series.


Subject(s)
Coordination Complexes , Plutonium , Berkelium , Chelating Agents/chemistry , Plutonium/chemistry
11.
ACS Cent Sci ; 7(11): 1798-1808, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34841054

ABSTRACT

The extraction and subsequent separation of individual rare earth elements (REEs) from REE-bearing feedstocks represent a challenging yet essential task for the growth and sustainability of renewable energy technologies. As an important step toward overcoming the technical and environmental limitations of current REE processing methods, we demonstrate a biobased, all-aqueous REE extraction and separation scheme using the REE-selective lanmodulin protein. Lanmodulin was conjugated onto porous support materials using thiol-maleimide chemistry to enable tandem REE purification and separation under flow-through conditions. Immobilized lanmodulin maintains the attractive properties of the soluble protein, including remarkable REE selectivity, the ability to bind REEs at low pH, and high stability over numerous low-pH adsorption/desorption cycles. We further demonstrate the ability of immobilized lanmodulin to achieve high-purity separation of the clean-energy-critical REE pair Nd/Dy and to transform a low-grade leachate (0.043 mol % REEs) into separate heavy and light REE fractions (88 mol % purity of total REEs) in a single column run while using ∼90% of the column capacity. This ability to achieve, for the first time, tandem extraction and grouped separation of REEs from very complex aqueous feedstock solutions without requiring organic solvents establishes this lanmodulin-based approach as an important advance for sustainable hydrometallurgy.

12.
Sci Adv ; 7(43): eabk0273, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34669462

ABSTRACT

Actinium-based therapies could revolutionize cancer medicine but remain tantalizing due to the difficulties in studying and limited knowledge of Ac chemistry. Current efforts focus on small synthetic chelators, limiting radioisotope complexation and purification efficiencies. Here, we demonstrate a straightforward strategy to purify medically relevant radiometals, actinium(III) and yttrium(III), and probe their chemistry, using the recently discovered protein, lanmodulin. The stoichiometry, solution behavior, and formation constant of the 228Ac3+-lanmodulin complex and its 90Y3+/natY3+/natLa3+ analogs were experimentally determined, representing the first actinium-protein and strongest actinide(III)-protein complex (sub-picomolar Kd) to be characterized. Lanmodulin's unparalleled properties enable the facile purification recovery of radiometals, even in the presence of >10+10 equivalents of competing ions and at ultratrace levels: down to 2 femtograms 90Y3+ and 40 attograms 228Ac3+. The lanmodulin-based approach charts a new course to study elusive isotopes and develop versatile chelating platforms for medical radiometals, both for high-value separations and potential in vivo applications.

13.
J Am Chem Soc ; 143(38): 15769-15783, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34542285

ABSTRACT

Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein's high selectivity over 243Am's daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations.


Subject(s)
Americium/chemistry , Bacterial Proteins/chemistry , Coordination Complexes/chemistry , Curium/chemistry , Ions/chemistry , Lanthanoid Series Elements/chemistry , Luminescent Measurements , Macromolecular Substances , Methylobacterium extorquens/chemistry , Molecular Conformation , Protein Binding , Structure-Activity Relationship
14.
Chem Sci ; 12(14): 5295-5301, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-34168780

ABSTRACT

Transplutonium actinides are among the heaviest elements whose macroscale chemical properties can be experimentally tested. Being scarce and hazardous, their chemistry is rather unexplored, and they have traditionally been considered a rather homogeneous group, with most of their characteristics extrapolated from lanthanide surrogates. Newly emerged applications for these elements, combined with their persistent presence in nuclear waste, however, call for a better understanding of their behavior in complex living systems. In this work, we explored the biodistribution and excretion profiles of four transplutonium actinides (248Cm, 249Bk, 249Cf and 253Es) in a small animal model, and evaluated their in vivo sequestration and decorporation by two therapeutic chelators, diethylenetriamine pentaacetic acid and 3,4,3-LI(1,2-HOPO). Notably, the organ deposition patterns of those transplutonium actinides were element-dependent, particularly in the liver and skeleton, where lower atomic number radionuclides showed up to 7-fold larger liver/skeleton accumulation ratios. Nevertheless, the metal content in multiple organs was significantly decreased for all tested actinides, particularly in the liver, after administering the therapeutic agent 3,4,3-LI(1,2-HOPO) post-contamination. Lastly, the systematic comparison of the radionuclide biodistributions showed discernibly element-dependent organ depositions, which may provide insights into design rules for new bio-inspired chelating systems with high sequestration and separation performance.

15.
Methods Enzymol ; 651: 1-22, 2021.
Article in English | MEDLINE | ID: mdl-33888200

ABSTRACT

Lanthanide biochemistry has experienced a revival in recent years owing to the discovery of new biomolecular platforms that are amenable to bind, sequester, or transport lanthanide ions. This has inherently created a need for physicochemical methods that report on lanthanide-containing macromolecular systems. In this chapter, the use of spectrophotometric methods to study the stability of lanthanide-macromolecule complexes in solution is discussed. Indeed, lanthanide ions have unique spectral properties in the ultraviolet, visible, and near-infrared domains that set them apart from the more common elements encountered in biochemistry, and these unique features can be leveraged to study, in a quantitative and robust manner, the solution chemistry of their biorelevant species (Kd, pH stability, temperature profile, etc.). This chapter aims at bringing a method that has been established and validated in the small molecule chemistry field to this new era of lanthanide biochemistry.


Subject(s)
Lanthanoid Series Elements , Ions , Macromolecular Substances , Solutions , Spectrophotometry
16.
Chempluschem ; 86(3): 483-491, 2021 03.
Article in English | MEDLINE | ID: mdl-33733616

ABSTRACT

An ideal chelator for f-elements features rapid kinetics of complexation, high thermodynamic stability, and slow kinetics of dissociation. Here we present the facile synthesis of a macrocyclic ligand bearing four 1-hydroxy-2-pyridinone units linked to a cyclen scaffold that rapidly forms thermodynamically stable complexes with lanthanides (Sm3+ , Eu3+ , Tb3+ , Dy3+ ) and a representative late actinide (Cm3+ ) in aqueous media and concurrently sensitizes them. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed an increase in the Ln/An-O bond lengths following the trend Cm>Eu>Tb and EXAFS data were compatible with time-resolved luminescence studies, which indicated one to two water molecules in the inner metal coordination sphere of Eu(III) and two water molecules for the Cm(III) complex. Spectrofluorimetric ligand competition titrations against DTPA confirmed the high thermodynamic stability of DOTHOPO complexes, with pM values between 19.9(1) and 21.9(2).

17.
Nat Commun ; 12(1): 948, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33574255

ABSTRACT

Due to their rarity and radioactive nature, comparatively little is known about the actinides, particularly those with atomic numbers higher than that of plutonium, and their compounds. In this work, we describe how transmission electron microscopy can provide comprehensive, safe, and cost-effective characterization using only single nanogram amounts of highly-radioactive, solid compounds. Chlorides of the rare elements berkelium and californium are dropcast and then converted in situ to oxides using the electron beam. The f-band occupancies are probed using electron energy loss spectroscopy and an unexpectedly weak spin-orbit-coupling is identified for berkelium. In contrast, californium follows a jj coupling scheme. These results have important implications for the chemistries of these elements and solidify the status of californium as a transitional element in the actinide series.

18.
Inorg Chem ; 60(2): 973-981, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33356197

ABSTRACT

The solution-state interactions between octadentate hydroxypyridinone (HOPO) and catecholamide (CAM) chelating ligands and uranium were investigated and characterized by UV-visible spectrophotometry and X-ray absorption spectroscopy (XAS), as well as electrochemically via spectroelectrochemistry (SEC) and cyclic voltammetry (CV) measurements. Depending on the selected chelator, we demonstrate the controlled ability to bind and stabilize UIV, generating with 3,4,3-LI(1,2-HOPO), a tetravalent uranium complex that is practically inert toward oxidation or hydrolysis in acidic, aqueous solution. At physiological pH values, we are also able to bind and stabilize UIV to a lesser extent, as evidenced by the mix of UIV and UVI complexes observed via XAS. CV and SEC measurements confirmed that the UIV complex formed with 3,4,3-LI(1,2-HOPO) is redox inert in acidic media, and UVI ions can be reduced, likely proceeding via a two-electron reduction process.

19.
Int J Rehabil Res ; 43(3): 195-198, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32769583

ABSTRACT

The aim of this systematic review was, first, to determine whether or not individuals with cognitive deficits after stroke were enrolled in trials that investigated upper limb robot-assisted therapy effectiveness, and, second, whether these trials measured cognitive outcomes. We retrieved 6 relevant systematic reviews covering, altogether, 66 articles and 2214 participants. Among these 66 clinical trials, only 10 (15%) enrolled stroke participants with impaired cognition, whereas 50 (76%) excluded those with impaired cognition. The remaining six trials (9%) were classified as unclear as they either excluded individuals unable to understand simple instructions or did not specify if those with cognitive disorders were included. Furthermore, only 5 trials (8%) used cognitive measures as outcomes. This review highlights a lack of consideration for individuals with cognitive impairments in upper limb robotic trials after stroke. However, cognition is important for complex motor relearning processes and should not be ignored.


Subject(s)
Cognition , Stroke Rehabilitation , Stroke , Humans , Robotics , Upper Extremity
20.
Inorg Chem ; 59(17): 11855-11867, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32686425

ABSTRACT

Lanmodulin (LanM) is a recently discovered protein that undergoes a large conformational change in response to rare-earth elements (REEs). Here, we use multiple physicochemical methods to demonstrate that LanM is the most selective macromolecule for REEs characterized to date and even outperforms many synthetic chelators. Moreover, LanM exhibits metal-binding properties and structural stability unseen in most other metalloproteins. LanM retains REE binding down to pH ≈ 2.5, and LanM-REE complexes withstand high temperature (up to 95 °C), repeated acid treatments, and up to molar amounts of competing non-REE metal ions (including Mg, Ca, Zn, and Cu), allowing the protein's use in harsh chemical processes. LanM's unrivaled properties were applied to metal extraction from two distinct REE-containing industrial feedstocks covering a broad range of REE and non-REE concentrations, namely, precombustion coal and electronic waste leachates. After only a single all-aqueous step, quantitative and selective recovery of the REEs from all non-REEs initially present (Li, Na, Mg, Ca, Sr, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, and U) was achieved, demonstrating the universal selectivity of LanM for REEs against non-REEs and its potential application even for industrial low-grade sources, which are currently underutilized. Our work indicates that biosourced macromolecules such as LanM may offer a new paradigm for extractive metallurgy and other applications involving f-elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...