Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38836185

ABSTRACT

In recent years, the importance of spectral CT scanners in clinical settings has significantly increased, necessitating the development of phantoms with spectral capabilities. This study introduces a dual-filament 3D printing technique for the fabrication of multi-material phantoms suitable for spectral CT, focusing particularly on creating realistic phantoms with orthopedic implants to mimic metal artifacts. Previously, we developed PixelPrint for creating patient-specific lung phantoms that accurately replicate lung properties through precise attenuation profiles and textures. This research extends PixelPrint's utility by incorporating a dual-filament printing approach, which merges materials such as calcium-doped Polylactic Acid (PLA) and metal-doped PLA, to emulate both soft tissue and bone, as well as orthopedic implants. The PixelPrint dual-filament technique utilizes an interleaved approach for material usage, whereby alternating lines of calcium-doped and metal-doped PLA are laid down. The development of specialized filament extruders and deposition mechanisms in this study allows for controlled layering of materials. The effectiveness of this technique was evaluated using various phantom types, including one with a dual filament orthopedic implant and another based on a human knee CT scan with a medical implant. Spectral CT scanner results demonstrated a high degree of similarity between the phantoms and the original patient scans in terms of texture, density, and the creation of realistic metal artifacts. The PixelPrint technology's ability to produce multi-material, lifelike phantoms present new opportunities for evaluating and developing metal artifact reduction (MAR) algorithms and strategies.

2.
Med Phys ; 51(5): 3265-3274, 2024 May.
Article in English | MEDLINE | ID: mdl-38588491

ABSTRACT

BACKGROUND: The detectability performance of a CT scanner is difficult to precisely quantify when nonlinearities are present in reconstruction. An efficient detectability assessment method that is sensitive to small effects of dose and scanner settings is desirable. We previously proposed a method using a search challenge instrument: a phantom is embedded with hundreds of lesions at random locations, and a model observer is used to detect lesions. Preliminary tests in simulation and a prototype showed promising results. PURPOSE: In this work, we fabricated a full-size search challenge phantom with design updates, including changes to lesion size, contrast, and number, and studied our implementation by comparing the lesion detectability from a nonprewhitening (NPW) model observer between different reconstructions at different exposure levels, and by estimating the instrument sensitivity to detect changes in dose. METHODS: Designed to fit into QRM anthropomorphic phantoms, our search challenge phantom is a cylindrical insert 10 cm wide and 4 cm thick, embedded with 12 000 lesions (nominal width of 0.6 mm, height of 0.8 mm, and contrast of -350 HU), and was fabricated using PixelPrint, a 3D printing technique. The insert was scanned alone at a high dose to assess printing accuracy. To evaluate lesion detectability, the insert was placed in a QRM thorax phantom and scanned from 50 to 625 mAs with increments of 25 mAs, once per exposure level, and the average of all exposure levels was used as high-dose reference. Scans were reconstructed with three different settings: filtered-backprojection (FBP) with Br40 and Br59, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) with strength level 5 and Br59 kernel. An NPW model observer was used to search for lesions, and detection performance of different settings were compared using area under the exponential transform of free response ROC curve (AUC). Using propagation of uncertainty, the sensitivity to changes in dose was estimated by the percent change in exposure due to one standard deviation of AUC, measured from 5 repeat scans at 100, 200, 300, and 400 mAs. RESULTS: The printed insert lesions had an average position error of 0.20 mm compared to printing reference. As the exposure level increases from 50 mAs to 625 mAs, the lesion detectability AUCs increase from 0.38 to 0.92, 0.42 to 0.98, and 0.41 to 0.97 for FBP Br40, FBP Br59, and SAFIRE Br59, respectively, with a lower rate of increase at higher exposure level. FBP Br59 performed best with AUC 0.01 higher than SAFIRE Br59 on average and 0.07 higher than FBP Br40 (all P < 0.001). The standard deviation of AUC was less than 0.006, and the sensitivity to detect changes in mAs was within 2% for FBP Br59. CONCLUSIONS: Our 3D-printed search challenge phantom with 12 000 submillimeter lesions, together with an NPW model observer, provide an efficient CT detectability assessment method that is sensitive to subtle effects in reconstruction and is sensitive to small changes in dose.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Tomography, X-Ray Computed , Radiation Dosage , Image Processing, Computer-Assisted/methods , Humans
3.
Article in English | MEDLINE | ID: mdl-37854299

ABSTRACT

Imaging is often a first-line method for diagnostics and treatment. Radiological workflows increasingly mine medical images for quantifiable features. Variability in device/vendor, acquisition protocol, data processing, etc., can dramatically affect quantitative measures, including radiomics. We recently developed a method (PixelPrint) for 3D-printing lifelike computed tomography (CT) lung phantoms, paving the way for future diagnostic imaging standardization. PixelPrint generates phantoms with accurate attenuation profiles and textures by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. The present study introduces a library of 3D printed lung phantoms covering a wide range of lung diseases, including usual interstitial pneumonia with advanced fibrosis, chronic hypersensitivity pneumonitis, secondary tuberculosis, cystic fibrosis, Kaposi sarcoma, and pulmonary edema. CT images of the patient-based phantom are qualitatively comparable to original CT images, both in texture, resolution and contrast levels allowing for clear visualization of even subtle imaging abnormalities. The variety of cases chosen for printing include both benign and malignant pathology causing a variety of alveolar and advanced interstitial abnormalities, both clearly visualized on the phantoms. A comparison of regions of interest revealed differences in attenuation below 6 HU. Identical features on the patient and the phantom have a high degree of geometrical correlation, with differences smaller than the intrinsic spatial resolution of the scans. Using PixelPrint, it is possible to generate CT phantoms that accurately represent different pulmonary diseases and their characteristic imaging features.

4.
Sci Rep ; 13(1): 17495, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37840044

ABSTRACT

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that possess accurate densities and exhibit visually realistic image textures. These qualities are crucial for evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized calcium-doped filament to increase the Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility, and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in visual texture and contrast. Micro-CT analysis revealed minimal variations between prints, with an overall deviation of ± 0.8% in filament line spacing and ± 0.022 mm in line width. Measured differences between patient and phantom were less than 12 HU for soft tissue and 15 HU for bone marrow, and 514 HU for cortical bone. The calcium-doped filament accurately represented bony tissue structures across different X-ray energies in spectral CT (RMSE ranging from ± 3 to ± 28 HU, compared to 400 mg/ml hydroxyapatite). In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.


Subject(s)
Calcium , Tomography, X-Ray Computed , Humans , Reproducibility of Results , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Cervical Vertebrae , Printing, Three-Dimensional
5.
Res Sq ; 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37162901

ABSTRACT

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.

6.
medRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162973

ABSTRACT

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.

7.
PNAS Nexus ; 2(3): pgad026, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36909822

ABSTRACT

In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of a reader study, we investigate the ability to provide consistent ground-truth targets by using patient-specific 3D-printed lung phantoms. PixelPrint was developed for 3D-printing lifelike computed tomography (CT) lung phantoms by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. Data sets of three COVID-19 patients served as input for 3D-printing lung phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic confidence in a blinded reader study. Effect sizes of evaluating phantom as opposed to patient images were assessed using linear mixed models. Finally, PixelPrint's production reproducibility was evaluated. Images of patients and phantoms had little variation in the estimated mean (0.03-0.29, using a 1-5 scale). When comparing phantom images to patient images, effect size analysis revealed that the difference was within one-third of the inter- and intrareader variabilities. High correspondence between the four phantoms created using the same patient images was demonstrated by PixelPrint's production repeatability tests, with greater similarity scores between high-dose acquisitions of the phantoms than between clinical-dose acquisitions of a single phantom. We demonstrated PixelPrint's ability to produce lifelike CT lung phantoms reliably. These phantoms have the potential to provide ground-truth targets for validating the generalizability of inference-based decision-support algorithms between different health centers and imaging protocols and for optimizing examination protocols with realistic patient-based phantoms. Classification: CT lung phantoms, reader study.

8.
Phys Med Biol ; 68(9)2023 04 19.
Article in English | MEDLINE | ID: mdl-36958051

ABSTRACT

Objective.This work evaluated the updated PennPET Explorer total-body (TB) PET scanner, which was extended to 6 rings with updated readout firmware to achieve a 142 cm axial field of view (AFOV) without 7.6 cm inter-ring axial gaps.Approach.National Electrical Manufacturers Association (NEMA) NU 2-2018 measurements were performed with modifications including longer phantoms for sensitivity and count-rate measurements and additional positions for spatial resolution and image quality. A long uniform phantom and the clinical trials network (CTN) phantom were also used.Main results.The total sensitivity increased to 140 kcps MBq-1for a 70 cm line, a gain of 1.8x compared to the same system with axial gaps; an additional 47% increase in total counts was observed with a 142 cm line at the same activity per cm. The noise equivalent count rate (NECR) increased by 1.8x without axial gaps. The peak NECR is 1550 kcps at 25 kBq cc-1for a 140 cm phantom; due to increased randoms, the NECR is lower than with a 70 cm phantom, for which NECR is 2156 kcps cc-1at 25 kBq cc-1and continues increasing. The time-of-flight resolution is 250 ps, increasing by <10 ps at the highest activity. The axial spatial resolution degrades by 0.6 mm near the center of the AFOV, compared to 4 mm resolution near the end. The NEMA image quality phantom showed consistent contrast recovery throughout the AFOV. A long uniform phantom demonstrated axial uniformity of uptake and noise, and the CTN phantom demonstrated quantitative accuracy for both18F and89Zr.Significance. The performance evaluation of the updated PennPET Explorer demonstrates significant gains compared to conventional scanners and shows where the current NEMA standard needs to be updated for TB-PET systems. The comparisons of systems with and without inter-ring gaps demonstrate the performance trade-offs of a more cost-effective TB-PET system with incomplete detector coverage.


Subject(s)
Positron-Emission Tomography , Tomography, X-Ray Computed , Positron-Emission Tomography/methods , Phantoms, Imaging
9.
Article in English | MEDLINE | ID: mdl-35664728

ABSTRACT

Phantoms are essential tools for assessing and verifying performance in computed tomography (CT). Realistic patient-based lung phantoms that accurately represent textures and densities are essential in developing and evaluating novel CT hardware and software. This study introduces PixelPrint, a 3D-printing solution to create patient-specific lung phantoms with accurate contrast and textures. PixelPrint converts patient images directly into printer instructions, where density is modeled as the ratio of filament to voxel volume to emulate local attenuation values. For evaluation of PixelPrint, phantoms based on four COVID-19 pneumonia patients were manufactured and scanned with the original (clinical) CT scanners and protocols. Density and geometrical accuracies between phantom and patient images were evaluated for various anatomical features in the lung, and a radiomic feature comparison was performed for mild, moderate, and severe COVID-19 pneumonia patient-based phantoms. Qualitatively, CT images of the patient-based phantoms closely resemble the original CT images, both in texture and contrast levels, with clearly visible vascular and parenchymal structures. Regions-of-interest (ROIs) comparing attenuation demonstrated differences below 15 HU. Manual size measurements performed by an experienced thoracic radiologist revealed a high degree of geometrical correlation between identical patient and phantom features, with differences smaller than the intrinsic spatial resolution of the images. Radiomic feature analysis revealed high correspondence, with correlations of 0.95-0.99 between patient and phantom images. Our study demonstrates the feasibility of 3D-printed patient-based lung phantoms with accurate geometry, texture, and contrast that will enable protocol optimization, CT research and development advancements, and generation of ground-truth datasets for radiomic evaluations.

10.
Article in English | MEDLINE | ID: mdl-36935778

ABSTRACT

Patient-based CT phantoms, with realistic image texture and densities, are essential tools for assessing and verifying CT performance in clinical practice. This study extends our previously presented 3D printing solution (PixelPrint) to patient-based phantoms with soft tissue and bone structures. To expand the Hounsfield Unit (HUs) range, we utilize a stone-based filament. Applying PixelPrint, we converted patient DICOM images directly into FDM printer instructions (G-code). Density was modeled as the ratio of filament to voxel volume to emulate attenuation profiles for each voxel, with the filament ratio controlled through continuous modification of the printing speed. Two different phantoms were designed to demonstrate the high reproducibility of our approach with micro-CT acquisitions, and to determine the mapping between filament line widths and HU values on a clinical CT system. Moreover, a third phantom based on a clinical cervical spine scan was manufactured and scanned with a clinical spectral CT scanner. CT image of the patient-based phantom closely resembles the original CT image both in texture and contrast levels. Measured differences between patient and phantom are around 10 HU for bone marrow voxels and around 150 HU for cortical bone. In addition, stone-based filament can accurately represent boney tissue structures across the different x-ray energies, as measured by spectral CT. This study demonstrates the feasibility of our 3D-printed patient-based phantoms to be extended to soft-tissue and bone structure while maintaining accurate organ geometry, image texture, and attenuation profiles for spectral CT.

11.
Med Phys ; 49(2): 825-835, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34910309

ABSTRACT

PURPOSE: Phantoms are a basic tool for assessing and verifying performance in CT research and clinical practice. Patient-based realistic lung phantoms accurately representing textures and densities are essential in developing and evaluating novel CT hardware and software. This study introduces PixelPrint, a 3D printing solution to create patient-based lung phantoms with accurate attenuation profiles and textures. METHODS: PixelPrint, a software tool, was developed to convert patient digital imaging and communications in medicine (DICOM) images directly into FDM printer instructions (G-code). Density was modeled as the ratio of filament to voxel volume to emulate attenuation profiles for each voxel, with the filament ratio controlled through continuous modification of the printing speed. A calibration phantom was designed to determine the mapping between filament line width and Hounsfield units (HU) within the range of human lungs. For evaluation of PixelPrint, a phantom based on a single human lung slice was manufactured and scanned with the same CT scanner and protocol used for the patient scan. Density and geometrical accuracy between phantom and patient CT data were evaluated for various anatomical features in the lung. RESULTS: For the calibration phantom, measured mean HU show a very high level of linear correlation with respect to the utilized filament line widths, (r > 0.999). Qualitatively, the CT image of the patient-based phantom closely resembles the original CT image both in texture and contrast levels (from -800 to 0 HU), with clearly visible vascular and parenchymal structures. Regions of interest comparing attenuation illustrated differences below 15 HU. Manual size measurements performed by an experienced thoracic radiologist reveal a high degree of geometrical correlation of details between identical patient and phantom features, with differences smaller than the intrinsic spatial resolution of the scans. CONCLUSION: The present study demonstrates the feasibility of 3D-printed patient-based lung phantoms with accurate organ geometry, image texture, and attenuation profiles. PixelPrint will enable applications in the research and development of CT technology, including further development in radiomics.


Subject(s)
Printing, Three-Dimensional , Tomography, X-Ray Computed , Calibration , Humans , Lung/diagnostic imaging , Phantoms, Imaging
12.
J Nucl Med ; 61(1): 136-143, 2020 01.
Article in English | MEDLINE | ID: mdl-31227573

ABSTRACT

We report on the development of the PennPET Explorer whole-body imager. Methods: The PennPET Explorer is a multiring system designed with a long axial field of view. The imager is scalable and comprises multiple 22.9-cm-long ring segments, each with 18 detector modules based on a commercial digital silicon photomultiplier. A prototype 3-segment imager has been completed and tested with an active 64-cm axial field of view. Results: The instrument design is described, and its physical performance measurements are presented. These include sensitivity of 55 kcps/MBq, spatial resolution of 4.0 mm, energy resolution of 12%, timing resolution of 256 ps, and a noise-equivalent count rate above 1,000 kcps beyond 30 kBq/mL. After an evaluation of lesion torso phantoms to characterize quantitative accuracy, human studies were performed on healthy volunteers. Conclusion: The physical performance measurements validated the system design and led to high-quality human studies.


Subject(s)
Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Whole Body Imaging/instrumentation , Whole Body Imaging/methods , Adult , Calibration , Equipment Design , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Kinetics , Middle Aged , Phantoms, Imaging , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL
...