Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Sci Rep ; 13(1): 22666, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114564

ABSTRACT

Evidence from histopathology and clinical imaging suggest that choroidal anatomy and hemodynamic perfusion are among the earliest changes in retinal diseases such as age-related macular degeneration (AMD). However, how inner choroidal anatomy affects hemodynamic perfusion is not well understood. Therefore, we sought to understand the influences of choroidal microvascular architecture on the spatial distribution of hemodynamic parameters in choriocapillaris from human donor eyes using image-based computational hemodynamic (ICH) simulations. We subjected image-based inner choroid reconstructions from eight human donor eyes to ICH simulation using a kinetic-based volumetric lattice Boltzmann method to compute hemodynamic distributions of velocity, pressure, and endothelial shear stress. Here, we demonstrate that anatomic parameters, including arteriolar and venular arrangements and intercapillary pillar density and distribution exert profound influences on inner choroidal hemodynamic characteristics. Reductions in capillary, arteriolar, and venular density not only reduce the overall blood velocity within choriocapillaris, but also substantially increase its spatial heterogeneity. These first-ever findings improve understanding of how choroidal anatomy affects hemodynamics and may contribute to pathogenesis of retinal diseases such as AMD.


Subject(s)
Choroid , Macular Degeneration , Humans , Choroid/blood supply , Macular Degeneration/pathology , Hemodynamics , Perfusion
2.
Science ; 382(6666): 39-40, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797018
3.
Invest Ophthalmol Vis Sci ; 64(5): 3, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37129905

ABSTRACT

Purpose: Rhegmatogenous retinal detachment (RRD) is a vision-threatening event that benefits from surgical intervention. While awaiting surgical reattachment, irreversible hypoxic and inflammatory damage to the retina often occurs. An interim therapy protecting photoreceptors could improve functional outcomes. We sought to determine whether Kamuvudine-9 (K-9), a derivative of nucleoside reverse transcriptase inhibitors (NRTIs) that inhibits inflammasome activation, and the NRTIs lamivudine (3TC) and azidothymidine (AZT) could protect the retina following RRD. Methods: RRD was induced in mice via subretinal injection (SRI) of 1% carboxymethylcellulose (CMC). To simulate outcomes following the clinical management of RRD, we determined the optimal conditions by which SRI of CMC induced spontaneous retinal reattachment (SRR) occurs over 10 days (RRD/SRR). K-9, 3TC, or AZT was administered via intraperitoneal injection. Inflammasome activation pathways were monitored by abundance of cleaved caspase-1, IL-18, and cleaved caspase-8, and photoreceptor death was assessed by TUNEL staining. Retinal function was assessed by full-field scotopic electroretinography. Results: RRD induced retinal inflammasome activation and photoreceptor death in mice. Systemic administration of K-9, 3TC, or AZT inhibited retinal inflammasome activation and photoreceptor death. In the RRD/SRR model, K-9 protected retinal electrical function during the time of RRD and induced an improvement following retinal reattachment. Conclusions: K-9 and NRTIs exhibit anti-inflammatory and neuroprotective activities in experimental RRD. Given its capacity to protect photoreceptor function during the period of RRD and enhance retinal function following reattachment, K-9 shows promise as a retinal neuroprotectant and warrants study in RRD. Further, this novel RRD/SRR model may facilitate experimental evaluation of functional outcomes relevant to RRD.


Subject(s)
Retinal Detachment , Animals , Mice , Retinal Detachment/surgery , Inflammasomes , Visual Acuity , Retina , Retrospective Studies , Vitrectomy
5.
medRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993694

ABSTRACT

Innate immune signaling through the NLRP3 inflammasome has been implicated in the pathogenesis of Alzheimer's disease (AD), the most prevalent form of dementia. We previously demonstrated that nucleoside reverse transcriptase inhibitors (NRTIs), drugs approved to treat HIV and hepatitis B infections, also inhibit inflammasome activation. Here we report that in humans, NRTI exposure was associated with a significantly lower incidence of AD in two of the largest health insurance databases in the United States. Treatment of aged 5xFAD mice (a mouse model of amyloid-ß deposition that expresses five mutations found in familial AD) with Kamuvudine-9 (K-9), an NRTI-derivative with enhanced safety profile, reduced Aß deposition and reversed their cognitive deficit by improving their spatial memory and learning performance to that of young wild-type mice. These findings support the concept that inflammasome inhibition could benefit AD and provide a rationale for prospective clinical testing of NRTIs or K-9 in AD.

8.
Nat Protoc ; 17(6): 1468-1485, 2022 06.
Article in English | MEDLINE | ID: mdl-35418688

ABSTRACT

Subretinal injection (SRI) is a widely used technique in retinal research and can be used to deliver nucleic acids, small molecules, macromolecules, viruses, cells or biomaterials such as nanobeads. Here we describe how to undertake SRI of mice. This protocol was adapted from a technique initially described for larger animals. Although SRI is a common procedure in eye research laboratories, there is no published guidance on the best practices for determining what constitutes a 'successful' SRI. Optimal injections are required for reproducibility of the procedure and, when carried out suboptimally, can lead to erroneous conclusions. To address this issue, we propose a standardized protocol for SRI with 'procedure success' defined by follow-up examination of the retina and the retinal pigmented epithelium rather than solely via intraoperative endpoints. This protocol takes 7-14 d to complete, depending on the reagent delivered. We have found, by instituting a standardized training program, that trained ophthalmologists achieve reliable proficiency in this technique after ~350 practice injections. This technique can be used to gain insights into retinal physiology and disease pathogenesis and to test the efficacy of experimental compounds in the retina or retinal pigmented epithelium.


Subject(s)
Retina , Retinal Pigment Epithelium , Animals , Injections , Mice , Reproducibility of Results , Retina/pathology
9.
Transl Vis Sci Technol ; 11(3): 13, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35275207

ABSTRACT

Purpose: Subretinal injection (SRI) in mice is widely used in retinal research, yet the learning curve (LC) of this surgically challenging technique is unknown. Methods: To evaluate the LC for SRI in a murine model, we analyzed training data from three clinically trained ophthalmic surgeons from 2018 to 2020. Successful SRI was defined as either the absence of retinal pigment epithelium (RPE) degeneration after phosphate buffered saline injection or the presence of RPE degeneration after Alu RNA injection. Multivariable survival-time regression models were used to evaluate the association between surgeon experience and success rate, with adjustment for injection agents, and to calculate an approximate case number to achieve a 95% success rate. Cumulative sum (CUSUM) analyses were performed and plotted individually to monitor each surgeon's simultaneous performance. Results: Despite prior microsurgery experience, the combined average success rate of the first 50 cases in mice was only 27%. The predicted SRI success rate did not reach a plateau above 95% until approximately 364 prior cases. Using the 364 training cases as a cutoff point, the predicted probability of success for cases 1 to 364 was 65.38%, and for cases 365 to 455 it was 99.32% (P < 0.0001). CUSUM analysis showed an initial upward slope and then remained within the decision intervals with an acceptable success rate set at 95% in the late stage. Conclusions: This study demonstrates the complexity and substantial LC for successful SRI in mice with high confidence. A systematic training system could improve the reliability and reproducibility of SRI-related experiments and improve the interpretation of experimental results using this technique. Translational Relevance: Our prediction model and monitor system allow objective quantification of technical proficiency in the field of subretinal drug delivery and gene therapy for the first time, to the best of our knowledge.


Subject(s)
Ophthalmologists , Surgeons , Animals , Humans , Learning Curve , Mice , Operative Time , Reproducibility of Results , Surgeons/education
10.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197297

ABSTRACT

Muller glia (MG) play a central role in reactive gliosis, a stress response associated with rare and common retinal degenerative diseases, including age-related macular degeneration (AMD). The posttranslational modification citrullination​ targeting glial fibrillary acidic protein (GFAP) in MG was initially discovered in a panocular chemical injury model. Here, we report in the paradigms of retinal laser injury, a genetic model of spontaneous retinal degeneration (JR5558 mice) and human wet-AMD tissues that MG citrullination is broadly conserved. After laser injury, GFAP polymers that accumulate in reactive MG are citrullinated in MG endfeet and glial cell processes. The enzyme responsible for citrullination, peptidyl arginine deiminase-4 (PAD4), localizes to endfeet and associates with GFAP polymers. Glial cell-specific PAD4 deficiency attenuates retinal hypercitrullination in injured retinas, indicating PAD4 requirement for MG citrullination. In retinas of 1-mo-old JR5558 mice, hypercitrullinated GFAP and PAD4 accumulate in MG endfeet/cell processes in a lesion-specific manner. Finally, we show that human donor maculae from patients with wet-AMD also feature the canonical endfeet localization of hypercitrullinated GFAP. Thus, we propose that endfeet are a "citrullination bunker" that initiates and sustains citrullination in retinal degeneration.


Subject(s)
Citrullination , Gliosis/metabolism , Neuroglia/metabolism , Retinal Degeneration/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Wet Macular Degeneration/metabolism
11.
Sci Immunol ; 6(66): eabi4493, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34860583

ABSTRACT

Detection of microbial products by multiprotein complexes known as inflammasomes is pivotal to host defense against pathogens. Nucleotide-binding domain leucine-rich repeat (NLR) CARD domain containing 4 (NLRC4) forms an inflammasome in response to bacterial products; this requires their detection by NLR family apoptosis inhibitory proteins (NAIPs), with which NLRC4 physically associates. However, the mechanisms underlying sterile NLRC4 inflammasome activation, which is implicated in chronic noninfectious diseases, remain unknown. Here, we report that endogenous short interspersed nuclear element (SINE) RNAs, which promote atrophic macular degeneration (AMD) and systemic lupus erythematosus (SLE), induce NLRC4 inflammasome activation independent of NAIPs. We identify DDX17, a DExD/H box RNA helicase, as the sensor of SINE RNAs that licenses assembly of an inflammasome comprising NLRC4, NLR pyrin domain­containing protein 3, and apoptosis-associated speck-like protein­containing CARD and induces caspase-1 activation and cytokine release. Inhibiting DDX17-mediated NLRC4 inflammasome activation decreased interleukin-18 release in peripheral blood mononuclear cells of patients with SLE and prevented retinal degeneration in an animal model of AMD. Our findings uncover a previously unrecognized noncanonical NLRC4 inflammasome activated by endogenous retrotransposons and provide potential therapeutic targets for SINE RNA­driven diseases.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Calcium-Binding Proteins/immunology , DEAD-box RNA Helicases/immunology , Inflammasomes/immunology , RNA/immunology , Retroelements/immunology , Animals , Apoptosis Regulatory Proteins/deficiency , Calcium-Binding Proteins/deficiency , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout
12.
Nat Commun ; 12(1): 6207, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707113

ABSTRACT

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.


Subject(s)
DNA Damage , Nucleotides, Cyclic/metabolism , Signal Transduction , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Crassostrea/genetics , Crassostrea/metabolism , G1 Phase Cell Cycle Checkpoints , Humans , Immunity, Innate , Interferon Type I/metabolism , Membrane Proteins/metabolism , Mice , Nucleotidyltransferases/metabolism , Phosphorylation , Poly ADP Ribosylation , Protein Serine-Threonine Kinases/metabolism , Recombinational DNA Repair , Sea Anemones/genetics , Sea Anemones/metabolism
13.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34620711

ABSTRACT

The atrophic form of age-related macular degeneration (dry AMD) affects nearly 200 million people worldwide. There is no Food and Drug Administration (FDA)-approved therapy for this disease, which is the leading cause of irreversible blindness among people over 50 y of age. Vision loss in dry AMD results from degeneration of the retinal pigmented epithelium (RPE). RPE cell death is driven in part by accumulation of Alu RNAs, which are noncoding transcripts of a human retrotransposon. Alu RNA induces RPE degeneration by activating the NLRP3-ASC inflammasome. We report that fluoxetine, an FDA-approved drug for treating clinical depression, binds NLRP3 in silico, in vitro, and in vivo and inhibits activation of the NLRP3-ASC inflammasome and inflammatory cytokine release in RPE cells and macrophages, two critical cell types in dry AMD. We also demonstrate that fluoxetine, unlike several other antidepressant drugs, reduces Alu RNA-induced RPE degeneration in mice. Finally, by analyzing two health insurance databases comprising more than 100 million Americans, we report a reduced hazard of developing dry AMD among patients with depression who were treated with fluoxetine. Collectively, these studies identify fluoxetine as a potential drug-repurposing candidate for dry AMD.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Drug Repositioning/methods , Fluoxetine/pharmacology , Macular Degeneration/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Retinal Pigment Epithelium/drug effects , Alu Elements/genetics , Animals , Blindness/pathology , Blindness/prevention & control , Cell Line , Cytokines/metabolism , Depression/drug therapy , Disease Models, Animal , Inflammasomes/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , RNA/genetics , Retina/pathology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/pathology
14.
Sci Adv ; 7(40): eabj3658, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34586848

ABSTRACT

Long interspersed nuclear element-1 (L1)­mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA­induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA­induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.

15.
Signal Transduct Target Ther ; 6(1): 149, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33850097

ABSTRACT

Nonfibrillar amyloid-ß oligomers (AßOs) are a major component of drusen, the sub-retinal pigmented epithelium (RPE) extracellular deposits characteristic of age-related macular degeneration (AMD), a common cause of global blindness. We report that AßOs induce RPE degeneration, a clinical hallmark of geographic atrophy (GA), a vision-threatening late stage of AMD that is currently untreatable. We demonstrate that AßOs induce activation of the NLRP3 inflammasome in the mouse RPE in vivo and that RPE expression of the purinergic ATP receptor P2RX7, an upstream mediator of NLRP3 inflammasome activation, is required for AßO-induced RPE degeneration. Two classes of small molecule inflammasome inhibitors-nucleoside reverse transcriptase inhibitors (NRTIs) and their antiretrovirally inert modified analog Kamuvudines-both inhibit AßOs-induced RPE degeneration. These findings crystallize the importance of P2RX7 and NLRP3 in a disease-relevant model of AMD and identify inflammasome inhibitors as potential treatments for GA.


Subject(s)
Amyloid beta-Peptides/metabolism , Macular Degeneration/drug therapy , Retinal Pigment Epithelium/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Amyloid beta-Peptides/genetics , Animals , Disease Models, Animal , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Male , Mice , Mice, Knockout
16.
Nat Commun ; 11(1): 4737, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968070

ABSTRACT

Innate immune signaling through the NLRP3 inflammasome is activated by multiple diabetes-related stressors, but whether targeting the inflammasome is beneficial for diabetes is still unclear. Nucleoside reverse-transcriptase inhibitors (NRTI), drugs approved to treat HIV-1 and hepatitis B infections, also block inflammasome activation. Here, we show, by analyzing five health insurance databases, that the adjusted risk of incident diabetes is 33% lower in patients with NRTI exposure among 128,861 patients with HIV-1 or hepatitis B (adjusted hazard ratio for NRTI exposure, 0.673; 95% confidence interval, 0.638 to 0.710; P < 0.0001; 95% prediction interval, 0.618 to 0.734). Meanwhile, an NRTI, lamivudine, improves insulin sensitivity and reduces inflammasome activation in diabetic and insulin resistance-induced human cells, as well as in mice fed with high-fat chow; mechanistically, inflammasome-activating short interspersed nuclear element (SINE) transcripts are elevated, whereas SINE-catabolizing DICER1 is reduced, in diabetic cells and mice. These data suggest the possibility of repurposing an approved class of drugs for prevention of diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Repositioning , Inflammasomes/drug effects , Insulin Resistance , Reverse Transcriptase Inhibitors/pharmacology , Adipocytes/metabolism , Animals , Cell Survival , DEAD-box RNA Helicases/metabolism , Diabetes Mellitus, Type 2/prevention & control , Diet, High-Fat/adverse effects , HIV-1/drug effects , Hepatitis B , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Ribonuclease III/metabolism
17.
Invest Ophthalmol Vis Sci ; 61(10): 4, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32749462

ABSTRACT

Purpose: Azidothymidine (AZT), a nucleoside reverse transcriptase inhibitor, possesses anti-inflammatory and anti-angiogenic activity independent of its ability to inhibit reverse transcriptase. The aim of this study was to evaluate the efficacy of 5'-glucuronyl azidothymidine (GAZT), an antiretrovirally inert hepatic clinical metabolite of AZT, in mouse models of retinal pigment epithelium (RPE) degeneration and choroidal neovascularization (CNV), hallmark features of dry and wet age-related macular degeneration (AMD), respectively. Methods: RPE degeneration was induced in wild-type (WT) C57BL/6J mice by subretinal injection of Alu RNA. RPE degeneration was assessed by fundus photography and confocal microscopy of zonula occludens-1-stained RPE flat mounts. Choroidal neovascularization was induced by laser injury in WT mice, and CNV volume was measured by confocal microscopy. AZT and GAZT were delivered by intravitreous injections. Inflammasome activation was monitored by western blotting for caspase-1 and by ELISA for IL-1ß in Alu RNA-treated bone marrow-derived macrophages (BMDMs). Results: GAZT inhibited Alu RNA-induced RPE degeneration and laser-induced CNV. GAZT also reduced Alu RNA-induced caspase-1 activation and IL-1ß release in BMDMs. Conclusions: GAZT possesses dual anti-inflammatory and anti-angiogenic properties and could be a viable treatment option for both forms of AMD.


Subject(s)
Choroidal Neovascularization/drug therapy , Disease Models, Animal , Geographic Atrophy/drug therapy , Retinal Pigment Epithelium/drug effects , Reverse Transcriptase Inhibitors/therapeutic use , Zidovudine/analogs & derivatives , Animals , Blotting, Western , Caspase 1/metabolism , Choroidal Neovascularization/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Geographic Atrophy/metabolism , Interleukin-1beta/metabolism , Intravitreal Injections , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Reverse Transcriptase Inhibitors/administration & dosage , Zidovudine/administration & dosage , Zidovudine/therapeutic use , Zonula Occludens-1 Protein/metabolism
18.
Invest Ophthalmol Vis Sci ; 61(5): 52, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32460310

ABSTRACT

Purpose: To determine the effect of voluntary exercise on choroidal neovascularization (CNV) in mice. Methods: Age-matched wild-type C57BL/6J mice were housed in cages equipped with or without running wheels. After four weeks of voluntary running or sedentariness, mice were subjected to laser injury to induce CNV. After surgical recovery, mice were placed back in cages with or without exercise wheels for seven days. CNV lesion volumes were measured by confocal microscopy. The effect of wheel running only in the seven days after injury was also evaluated. Macrophage abundance and cytokine expression were quantified. Results: In the first study, exercise-trained mice exhibited a 45% reduction in CNV volume compared to sedentary mice. In the replication study, a 32% reduction in CNV volume in exercise-trained mice was observed (P = 0.029). Combining these two studies, voluntary exercise was found to reduce CNV by 41% (P = 0.0005). Exercise-trained male and female mice had similar CNV volumes (P = 0.99). The daily running distance did not correlate with CNV lesion size. Exercise only after the laser injury without a preconditioning period did not reduce CNV size (P = 0.41). CNV lesions of exercise-trained mice also exhibited significantly lower F4/80+ macrophage staining and Vegfa and Ccl2 mRNA expression. Conclusions: These findings provide the first experimental evidence that voluntary exercise improves CNV outcomes. These studies indicate that exercise before laser treatment is required to improve CNV outcomes.


Subject(s)
Choroidal Neovascularization/prevention & control , Motor Activity , Animals , Female , Male , Mice , Mice, Inbred C57BL
19.
Proc Natl Acad Sci U S A ; 117(5): 2579-2587, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964819

ABSTRACT

Degeneration of the retinal pigmented epithelium (RPE) and aberrant blood vessel growth in the eye are advanced-stage processes in blinding diseases such as age-related macular degeneration (AMD), which affect hundreds of millions of people worldwide. Loss of the RNase DICER1, an essential factor in micro-RNA biogenesis, is implicated in RPE atrophy. However, the functional implications of DICER1 loss in choroidal and retinal neovascularization are unknown. Here, we report that two independent hypomorphic mouse strains, as well as a separate model of postnatal RPE-specific DICER1 ablation, all presented with spontaneous RPE degeneration and choroidal and retinal neovascularization. DICER1 hypomorphic mice lacking critical inflammasome components or the innate immune adaptor MyD88 developed less severe RPE atrophy and pathological neovascularization. DICER1 abundance was also reduced in retinas of the JR5558 mouse model of spontaneous choroidal neovascularization. Finally, adenoassociated vector-mediated gene delivery of a truncated DICER1 variant (OptiDicer) reduced spontaneous choroidal neovascularization in JR5558 mice. Collectively, these findings significantly expand the repertoire of DICER1 in preserving retinal homeostasis by preventing both RPE degeneration and pathological neovascularization.


Subject(s)
DEAD-box RNA Helicases/metabolism , Macular Degeneration/metabolism , Retinal Pigment Epithelium/blood supply , Ribonuclease III/metabolism , Animals , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/physiopathology , DEAD-box RNA Helicases/genetics , Humans , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/physiopathology , Retinal Neovascularization/genetics , Retinal Neovascularization/metabolism , Retinal Neovascularization/parasitology , Retinal Neovascularization/physiopathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Ribonuclease III/genetics
20.
Invest Ophthalmol Vis Sci ; 59(15): 5795-5802, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30508043

ABSTRACT

Purpose: The misuse of inauthentic cell lines is widely recognized as a major threat to the integrity of biomedical science. Whereas the majority of efforts to address this have focused on DNA profiling, we sought to anatomically, transcriptionally, and functionally authenticate the RF/6A chorioretinal cell line, which is widely used as an endothelial cell line to model retinal and choroidal angiogenesis. Methods: Multiple vials of RF/6A cells obtained from different commercial distributors were studied to validate their genetic, transcriptomic, anatomic, and functional fidelity to bona fide endothelial cells. Results: Transcriptomic profiles of RF/6A cells obtained either de novo or from a public data repository did not correspond to endothelial gene expression signatures. Expression of established endothelial markers were very low or undetectable in RF/6A compared to primary human endothelial cells. Importantly, RF/6A cells also did not display functional characteristics of endothelial cells such as uptake of acetylated LDL, expression of E-selectin in response to TNF-α exposure, alignment in the direction of shear stress, and AKT and ERK1/2 phosphorylation following VEGFA stimulation. Conclusions: Multiple independent sources of RF/6A do not exhibit key endothelial cell phenotypes. Therefore, these cells appear unsuitable as surrogates for choroidal or retinal endothelial cells. Further, cell line authentication methods should extend beyond genomic profiling to include anatomic, transcriptional, and functional assessments.


Subject(s)
Choroid/blood supply , Endothelial Cells/cytology , Retinal Vessels/physiology , Animals , Biomarkers , Blotting, Western , Cell Line , E-Selectin/genetics , Endothelial Cells/metabolism , Gene Expression Profiling , Genetic Markers/genetics , Humans , Immunohistochemistry , Macaca mulatta , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Phenotype , Real-Time Polymerase Chain Reaction , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL