Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 47(11): e2400113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819739

ABSTRACT

An amide-based covalent organic framework (COF) was successfully synthesized using the reaction between 1,3,5-trimesoyl chloride and ethylenediamine. The structure and morphology of the COF were characterized using Fourier-transform infrared spectra, nuclear magnetic resonance spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area analysis. The COF was employed as a solid-phase extraction adsorbent for the sampling and preconcentration of chlorophenols from industrial wastewater samples prior to high-performance liquid chromatography with ultraviolet detection. The experimental parameters influencing the extraction efficiency including type and volume of eluent solvent, sample solution volume, salt concentration, sample flow rate, and sample solution pH were investigated and optimized using a response surface methodology employing Box-Behnken-design. Under optimized conditions, calibration curves exhibited good linearities over the range of 0.003-10 µg/mL with determination coefficients (R2) ranging from 0.9982 to 0.9999. The method's limits of detection ranged from 0.001 to 0.01 µg/mL. Good repeatability was achieved with relative standard deviations below 4.7%. The developed procedure utilizing the COF adsorbent was successfully applied to determine chlorophenols accurately and precisely in various industrial wastewater samples.

2.
Environ Monit Assess ; 196(6): 582, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806872

ABSTRACT

IoT is a game-changer across all fields, including chemistry. Embracing sustainable practices and green chemistry, the miniaturization and automation of systems, and their integration into IoT is key to achieving these principles, as a rising trend with momentum. Particularly, IoT and analytical chemistry are linked in the rapid exchange of analytical data for environmental, industrial, healthcare, and educational applications. Meanwhile, cooperation with other fields of science is evident, and there is a prompt and subjective analysis of information related to analytical systems and methodologies. This paper will review the concepts, requirements, and architecture of IoT and its role in the miniaturization and automation of analytical tools using electronic modules and sensors. The aim is to explore the standards and perspectives of IoT and its interaction with different aspects of analytical chemistry. Additionally, it aimed to explain the basics and applications of IoT for chemists, and its relevance to different subfields of analytical chemistry, particularly in the field of environmental chemical surveillance. The article also covers updating IoT devices and creating DIY-based degradation devices to enhance the educational aspect of chemistry and reduce barriers to lab facilities and equipment. Lastly, it will explore how IoT is really important and how it's going to significantly impact analytical chemistry.


Subject(s)
Environmental Monitoring , Internet of Things , Miniaturization , Environmental Monitoring/methods
3.
Food Chem ; 449: 139168, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38574521

ABSTRACT

A robust biocompatible solid-phase microextraction (SPME) fiber, so-called Ti/APTS/GA/CS, was prepared by chemical bonding of cross-linked glutaraldehyde-chitosan to the surface of a titanium wire using APTS. The fiber was applied for sampling of phytohormones in plant tissues, followed by HPLC-UV analysis. The structure and morphology of the fiber coating was investigated by FT-IR, SEM, EDX, XRD, and TGA techniques. A Box-Behnken design was implemented to optimize the experimental variables. The calibration graphs were linear over a wide linear range (0.5-200 µg L-1) with LODs over the range of 0.01-0.06 µg L-1. The intra-day and inter-day precisions were found to be 1.3-6.3% and 4.3-7.3%, respectively. The matrix effect values ranged from 86.5% to 111.7%, indicating that the complex sample matrices had an insignificant effect on the determination of phytohormones. The fiber was successfully employed for the direct-immersion SPME (DI-SPME-HPLC) analysis of the phytohormones in cucumber, tomato, date palm, and calendula samples.


Subject(s)
Chitosan , Glutaral , Plant Growth Regulators , Solid Phase Microextraction , Titanium , Chitosan/chemistry , Titanium/chemistry , Glutaral/chemistry , Plant Growth Regulators/chemistry , Plant Growth Regulators/analysis , Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry
4.
J Chromatogr A ; 1725: 464949, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38688054

ABSTRACT

This study introduces an innovative needle trap device (NTD) featuring a molecularly imprinted polymer (MIP) surface-modified Zeolite Y. The developed NTD was integrated with gas chromatography-flame ionization detector (GC-FID) and employed for analysis of fuel ether oxygenates (methyl tert­butyl ether, MTBE, ethyl tert­butyl ether, ETBE, and tert­butyl formate, TBF) in urine samples. To optimize the key experimental variables including extraction temperature, extraction time, salt concentration, and stirring speed, a central composite design-response surface methodology (CCD-RSM) was employed. The optimal values for extraction in the study were found to be 51.2 °C extraction temperature, 46.2 min extraction time, 27 % salt concentration, and 620 rpm stirring speed. Under the optimized conditions, the calibration curves demonstrated excellent linearity within the range of 0.1-100 µg L-1, with correlation coefficients (R2) exceeding 0.99. The limits of detection (LODs) for MTBE, ETBE, and TBF were obtained 0.06, 0.08, and 0.09 µg L-1, respectively. Moreover, the limits of quantification (LOQs) for MTBE, ETBE, and TBF were obtained 0.18, 0.24, and 0.27 µg L-1, respectively. The enrichment factor was also found to be in the range of 98-129.The NTD-GC-FID procedure demonstrated a high extraction efficiency, making it a promising tool for urinary biomonitoring of fuel ether oxygenates with improved sensitivity and selectivity compared to current methods.


Subject(s)
Limit of Detection , Methyl Ethers , Zeolites , Zeolites/chemistry , Humans , Methyl Ethers/urine , Methyl Ethers/chemistry , Molecularly Imprinted Polymers/chemistry , Biological Monitoring/methods , Chromatography, Gas/methods , Ethyl Ethers/urine , Ethyl Ethers/chemistry
5.
Talanta ; 274: 126031, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574536

ABSTRACT

Real-time monitoring of nitrite and nitrate is crucial for maintaining soil health and promoting plant growth. In this study, a portable ion-chromatograph (IC, Aquamonitrix) analyser, coupled with a field-applicable ultrasonic-assisted extraction method, was utilised for in-field determination of nitrate and nitrite in soils. This is the first application of this type of analyser to soil nutrients. On-site analysis of soil from a local sports field showed 94.8 ± 4.3 µg g-1 nitrate, with LODs of 32.0 µg g-1 for nitrate and 5.4 µg g-1 for nitrite. The results were in close agreement with those obtained using a conventional lab-based IC. Relative standard deviations (%RSDs) for soil analysis using Aquamonitrix were consistently below 10%. The obtained average recoveries of samples spiked with nitrite were 100% and 104% for the portable IC and conventional IC, respectively. Furthermore, to assess the suitability of portable IC for samples with high organic matter content, various natural organic fertilisers were extracted and analysed. The results showed 16.2 ± 0.7 µg g-1 nitrite and 28.5 ± 5.6 µg g-1 nitrate in sheep manure samples with LODs of 2.0 µg g-1 for nitrite and 12.0 µg g-1 for nitrate. The portable IC system was further demonstrated via real-time on-site analysis of soil pore-water acquired using a portable battery-based ceramic pore-water sampler. A continuous increase in nitrate concentration over time was observed (from 80 to 148 µg mL-1) in the soil pore-water in a vegetable garden four days after heavy rain. Unlike conventionally sampled natural waters, 7-day storage of the studied pore water samples revealed no changes in nitrate concentrations. An average of 558 ± 51 µg mL-1 nitrate was detected in the soil pore-water samples analysed on a spinach farm, immediately after irrigation.

7.
Food Chem ; 442: 138455, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38271905

ABSTRACT

The study was performed in two phases. First, the polymerization was carried out upon three magnetized surfaces of silica aerogel, zeolite Y, and MIL-101(Cr). Then, optimal molecularly imprinted polymer and optimal extraction conditions were determined by the central composite design-response surface method. Subsequently, the validation parameters of dispersive solid-phase extraction based optimal molecularly imprinted polymer were examined for the extraction of the fuel ether oxygenates. The optimal conditions include the type of adsorbent: Zeolite-magnetic molecularly imprinted polymer, the amount of adsorbent: 40 mg, pH: 7.7, and absorption time: 24.8 min which was selected with desirability equal to 0.996. The calibration graphs were linear between 1 and 100 µg L-1, with good correlation coefficients. The limits of detection were found to be 0.64, 0. 4, and 0.34 µg L-1 for methyl tert-butyl ether, ethyl tert-butyl ether, and tert butyl formate, respectively. The method proved reliable for analyzing fuel ether oxygenates in drinking water.


Subject(s)
Drinking Water , Metal-Organic Frameworks , Molecular Imprinting , Zeolites , Molecularly Imprinted Polymers , Silicon Dioxide , Ether , Polymers , Solid Phase Extraction , Ethers , Magnetic Phenomena , Molecular Imprinting/methods
SELECTION OF CITATIONS
SEARCH DETAIL