Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Ann Clin Transl Neurol ; 11(3): 744-756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481040

ABSTRACT

OBJECTIVE: Methylation of plasma cell-free DNA (cfDNA) has potential as a marker of brain damage in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, we study methylation of cfDNA in presymptomatic and symptomatic carriers of genetic FTD pathogenic variants, next to healthy controls. METHODS: cfDNA was isolated from cross-sectional plasma of 10 presymptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), 10 symptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), and 9 healthy controls. Genome-wide methylation of cfDNA was determined using a high-resolution sequencing technique (MeD-seq). Cumulative scores based on the identified differentially methylated regions (DMRs) were estimated for presymptomatic carriers (vs. controls and symptomatic carriers), and reevaluated in a validation cohort (8 presymptomatic: 3 C9orf72, 3 GRN, and 2 MAPT; 26 symptomatic: 7 C9orf72, 6 GRN, 12 MAPT, and 1 TARDBP; 13 noncarriers from genetic FTD families). RESULTS: Presymptomatic carriers showed a distinctive methylation profile compared to healthy controls and symptomatic carriers. Cumulative DMR scores in presymptomatic carriers enabled to significantly differentiate presymptomatic carriers from healthy controls (p < 0.001) and symptomatic carriers (p < 0.001). In the validation cohort, these scores differentiated presymptomatic carriers from symptomatic carriers (p ≤ 0.007) only. Transcription-start-site methylation in presymptomatic carriers, generally associated with gene downregulation, was enriched for genes involved in ubiquitin-dependent processes, while gene body methylation, generally associated with gene upregulation, was enriched for genes involved in neuronal cell processes. INTERPRETATION: A distinctive methylation profile of cfDNA characterizes the presymptomatic stage of genetic FTD, and could reflect neuronal death in this stage.


Subject(s)
Cell-Free Nucleic Acids , Frontotemporal Dementia , Pick Disease of the Brain , Humans , Frontotemporal Dementia/pathology , C9orf72 Protein/genetics , Cross-Sectional Studies , DNA Methylation , Mutation , Pick Disease of the Brain/genetics , Cell-Free Nucleic Acids/genetics
2.
Neurology ; 101(10): e1069-e1082, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37491327

ABSTRACT

BACKGROUND AND OBJECTIVES: Elevated serum neurofilament light chain (NfL) is used to identify carriers of genetic frontotemporal dementia (FTD) pathogenic variants approaching prodromal conversion. Yet, the magnitude and timeline of NfL increase are still unclear. Here, we investigated the predictive and early diagnostic value of longitudinal serum NfL for the prodromal conversion in genetic FTD. METHODS: In a longitudinal observational cohort study of genetic FTD pathogenic variant carriers, we examined the diagnostic accuracy and conversion risk associated with cross-sectional and longitudinal NfL. Time periods relative to prodromal conversion (>3, 3-1.5, 1.5-0 years before; 0-1.5 years after) were compared with values of participants who did not convert. Next, we modeled longitudinal NfL and MRI volume trajectories to determine their timeline. RESULTS: We included 21 participants who converted (5 chromosome 9 open-reading frame 72 [C9orf72], 10 progranulin [GRN], 5 microtubule-associated protein tau [MAPT], and 1 TAR DNA-binding protein [TARDBP]) and 61 who did not (20 C9orf72, 30 GRN, and 11 MAPT). Participants who converted had higher NfL levels at all examined periods before prodromal conversion (median values 14.0-18.2 pg/mL; betas = 0.4-0.7, standard error [SE] = 0.1, p < 0.046) than those who did not (6.5 pg/mL) and showed further increase 0-1.5 years after conversion (28.4 pg/mL; beta = 1.0, SE = 0.1, p < 0.001). Annualized longitudinal NfL change was only significantly higher in participants who converted (vs. participants who did not) 0-1.5 years after conversion (beta = 1.2, SE = 0.3, p = 0.001). Diagnostic accuracy of cross-sectional NfL for prodromal conversion (vs. nonconversion) was good-to-excellent at time periods before conversion (area under the curve range: 0.72-0.92), improved 0-1.5 years after conversion (0.94-0.97), and outperformed annualized longitudinal change (0.76-0.84). NfL increase in participants who converted occurred earlier than frontotemporal MRI volume change and differed by genetic group and clinical phenotypes. Higher NfL corresponded to increased conversion risk (hazard ratio: cross-sectional = 6.7 [95% CI 3.3-13.7]; longitudinal = 13.0 [95% CI 4.0-42.8]; p < 0.001), but conversion-free follow-up time varied greatly across participants. DISCUSSION: NfL increase discriminates individuals who convert to prodromal FTD from those who do not, preceding significant frontotemporal MRI volume loss. However, NfL alone is limited in predicting the exact timing of prodromal conversion. NfL levels also vary depending on underlying variant-carrying genes and clinical phenotypes. These findings help to guide participant recruitment for clinical trials targeting prodromal genetic FTD.


Subject(s)
Frontotemporal Dementia , Pick Disease of the Brain , Humans , Biomarkers , C9orf72 Protein/genetics , Cohort Studies , Cross-Sectional Studies , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Intermediate Filaments , Neurofilament Proteins , tau Proteins/genetics
3.
J Neurol ; 270(11): 5418-5435, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37462752

ABSTRACT

BACKGROUND: The semantic fluency test is one of the most widely used neuropsychological tests in dementia diagnosis. Research utilizing the qualitative, psycholinguistic information embedded in its output is currently underexplored in presymptomatic and prodromal genetic FTD. METHODS: Presymptomatic MAPT (n = 20) and GRN (n = 43) mutation carriers, and controls (n = 55) underwent up to 6 years of neuropsychological assessment, including the semantic fluency test. Ten mutation carriers became symptomatic (phenoconverters). Total score and five qualitative fluency measures (lexical frequency, age of acquisition, number of clusters, cluster size, number of switches) were calculated. We used multilevel linear regression modeling to investigate longitudinal decline. We assessed the co-correlation of the qualitative measures at each time point with principal component analysis. We explored associations with cognitive decline and grey matter atrophy using partial correlations, and investigated classification abilities using binary logistic regression. RESULTS: The interrater reliability of the qualitative measures was good (ICC = 0.75-0.90). There was strong co-correlation between lexical frequency and age of acquisition, and between clustering and switching. At least 4 years pre-phenoconversion, GRN phenoconverters had fewer but larger clusters (p < 0.001), and fewer switches (p = 0.004), correlating with lower executive function (r = 0.87-0.98). Fewer switches was predictive of phenoconversion, correctly classifying 90.3%. Starting at least 4 years pre-phenoconversion, MAPT phenoconverters demonstrated an increase in lexical frequency (p = 0.009) and a decline in age of acquisition (p = 0.034), correlating with lower semantic processing (r = 0.90). Smaller cluster size was predictive of phenoconversion, correctly classifying 89.3%. Increase in lexical frequency and decline in age of acquisition were associated with grey matter volume loss of predominantly temporal areas, while decline in the number of clusters, cluster size, and switches correlated with grey matter volume loss of predominantly frontal areas. CONCLUSIONS: Qualitative aspects of semantic fluency could give insight into the underlying mechanisms as to why the "traditional" total score declines in the different FTD mutations. However, the qualitative measures currently demonstrate more fluctuation than the total score, the measure that seems to most reliably deteriorate with time. Replication in a larger sample of FTD phenoconverters is warranted to identify if qualitative measures could be sensitive cognitive biomarkers to identify and track mutation carriers converting to the symptomatic stage of FTD.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/psychology , Longitudinal Studies , Reproducibility of Results , Semantics , Neuropsychological Tests , Mutation/genetics , C9orf72 Protein/genetics
4.
Brain Pathol ; 33(4): e13158, 2023 07.
Article in English | MEDLINE | ID: mdl-36974379

ABSTRACT

Neuroinflammation has been implicated in frontotemporal lobar degeneration (FTLD) pathophysiology, including in genetic forms with microtubule-associated protein tau (MAPT) mutations (FTLD-MAPT) or chromosome 9 open reading frame 72 (C9orf72) repeat expansions (FTLD-C9orf72). Iron accumulation as a marker of neuroinflammation has, however, been understudied in genetic FTLD to date. To investigate the occurrence of cortical iron accumulation in FTLD-MAPT and FTLD-C9orf72, iron histopathology was performed on the frontal and temporal cortex of 22 cases (11 FTLD-MAPT and 11 FTLD-C9orf72). We studied patterns of cortical iron accumulation and its colocalization with the corresponding underlying pathologies (tau and TDP-43), brain cells (microglia and astrocytes), and myelination. Further, with ultrahigh field ex vivo MRI on a subset (four FTLD-MAPT and two FTLD-C9orf72), we examined the sensitivity of T2*-weighted MRI for iron in FTLD. Histopathology showed that cortical iron accumulation occurs in both FTLD-MAPT and FTLD-C9orf72 in frontal and temporal cortices, characterized by a diffuse mid-cortical iron-rich band, and by a superficial cortical iron band in some cases. Cortical iron accumulation was associated with the severity of proteinopathy (tau or TDP-43) and neuronal degeneration, in part with clinical severity, and with the presence of activated microglia, reactive astrocytes and myelin loss. Ultra-high field T2*-weighted MRI showed a good correspondence between hypointense changes on MRI and cortical iron observed on histology. We conclude that iron accumulation is a feature of both FTLD-MAPT and FTLD-C9orf72 and is associated with pathological severity. Therefore, in vivo iron imaging using T2*-weighted MRI or quantitative susceptibility mapping may potentially be used as a noninvasive imaging marker to localize pathology in FTLD.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , C9orf72 Protein/genetics , Neuroinflammatory Diseases , Progranulins , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , tau Proteins/metabolism , DNA-Binding Proteins/metabolism
5.
Sci Transl Med ; 15(689): eadf0141, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989373

ABSTRACT

Complement overactivation mediates microglial synapse elimination in neurological diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), but how complement activity is regulated in the brain remains largely unknown. We identified that the secreted neuronal pentraxin Nptx2 binds complement C1q and thereby regulates its activity in the brain. Nptx2-deficient mice show increased complement activity, C1q-dependent microglial synapse engulfment, and loss of excitatory synapses. In a neuroinflammation culture model and in aged TauP301S mice, adeno-associated virus (AAV)-mediated neuronal overexpression of Nptx2 was sufficient to restrain complement activity and ameliorate microglia-mediated synapse loss. Analysis of human cerebrospinal fluid (CSF) samples from a genetic FTD cohort revealed reduced concentrations of Nptx2 and Nptx2-C1q protein complexes in symptomatic patients, which correlated with elevated C1q and activated C3. Together, these results show that Nptx2 regulates complement activity and microglial synapse elimination in the brain and that diminished Nptx2 concentrations might exacerbate complement-mediated neurodegeneration in patients with FTD.


Subject(s)
Frontotemporal Dementia , Microglia , Humans , Mice , Animals , Aged , Microglia/metabolism , Complement C1q/genetics , Complement C1q/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Synapses/metabolism , Complement System Proteins/metabolism
7.
Assessment ; 30(8): 2545-2559, 2023 12.
Article in English | MEDLINE | ID: mdl-36799220

ABSTRACT

The ScreeLing is a screening instrument developed to assess post-stroke aphasia, via the linguistic levels Syntax, Phonology, and Semantics. It could also be a useful test for the clinical subtypes of frontotemporal dementia (FTD) and Alzheimer's dementia (AD), as specific and often selective disorders are expected. Its ability to differentiate between the clinical subtypes of FTD and AD is, however, still unknown. We investigated differences in ScreeLing total and subscores, linguistic-level disorders' relationship with disease severity, and classification abilities, in patients with behavioral variant FTD (bvFTD; n = 46), patients with primary progressive aphasia (PPA; n = 105) (semantic variant primary progressive aphasia [svPPA], non-fluent variant primary progressive aphasia [nfvPPA], and logopenic variant primary progressive aphasia [lvPPA], AD [n = 20] and controls [n = 35]). We examined group differences in ScreeLing total and subscores, and one-, two- or three-level linguistic disorders using one-way analyses of covariance (ANCOVAs) or Quade's rank ANCOVA. We used frequency analyses to obtain the occurrence of the linguistic-level disorders. We determined sensitivity and specificity by the area under the curve by receiver-operating characteristics analyses to investigate classification abilities. The total score was lower in patients (bvFTD: 63.8 ± 8.5, svPPA: 58.8 ± 11.3, nfvPPA: 63.5 ± 8.4, lvPPA: 61.7 ± 6.6, AD: 63.8 ± 5.5) than controls (71.3 ± 1.0) (p < .001). Syntax subscores were lower in svPPA (19.4 ± 4.6; p < .001) and lvPPA (20.3 ± 3.2; p = .002) than controls (23.8 ± 0.4). Phonology subscores were lower in lvPPA (19.8 ± 2.6) than bvFTD (21.7 ± 2.8) (p = .010). Semantics subscores were lowest in svPPA (17.8 ± 5.0; p < .002). A selective phonological disorder was most prevalent in lvPPA (34.9%). The higher the disease severity, the more linguistic-level disorders. The optimal cutoff for the total score was 70, and 23 for all three subscores. Good classification abilities were found for the Semantics (svPPA vs. bvFTD), Phonology (lvPPA vs. svPPA), and Syntax (nfvPPA vs. lvPPA) subscores. This easy to administer test gives information about language processing with the potential to improve differential diagnosis in memory clinics and in the future potentially also clinical trial planning.


Subject(s)
Alzheimer Disease , Aphasia, Primary Progressive , Frontotemporal Dementia , Humans , Alzheimer Disease/diagnosis , Semantics , Frontotemporal Dementia/diagnosis , Linguistics , Aphasia, Primary Progressive/diagnosis
8.
J Neurol Sci ; 446: 120590, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36812822

ABSTRACT

OBJECTIVE: Sensitive cognitive markers are still needed for frontotemporal dementia (FTD). The Benson Complex Figure Test (BCFT) is an interesting candidate test, as it assesses visuospatial, visual memory, and executive abilities, allowing the detection of multiple mechanisms of cognitive impairment. To investigate differences in BCFT Copy, Recall and Recognition in presymptomatic and symptomatic FTD mutation carriers, and to explore its cognitive and neuroimaging correlates. METHOD: We included cross-sectional data from 332 presymptomatic and 136 symptomatic mutation carriers (GRN, MAPT or C9orf72 mutations), and 290 controls in the GENFI consortium. We examined gene-specific differences between mutation carriers (stratified by CDR® NACC-FTLD score) and controls using Quade's / Pearson Χ2 tests. We investigated associations with neuropsychological test scores and grey matter volume using partial correlations and multiple regression models respectively. RESULTS: No significant differences were found between groups at CDR® NACC-FTLD 0-0.5. Symptomatic GRN and C9orf72 mutation carriers had lower Copy scores at CDR® NACC-FTLD ≥2. All three groups had lower Recall scores at CDR® NACC-FTLD ≥2, with MAPT mutation carriers starting at CDR® NACC-FTLD ≥1. All three groups had lower Recognition scores at CDR® NACC FTLD ≥2. Performance correlated with tests for visuoconstruction, memory, and executive function. Copy scores correlated with frontal-subcortical grey matter atrophy, while Recall scores correlated with temporal lobe atrophy. CONCLUSIONS: In the symptomatic stage, the BCFT identifies differential mechanisms of cognitive impairment depending on the genetic mutation, corroborated by gene-specific cognitive and neuroimaging correlates. Our findings suggest that impaired performance on the BCFT occurs relatively late in the genetic FTD disease process. Therefore its potential as cognitive biomarker for upcoming clinical trials in presymptomatic to early-stage FTD is most likely limited.


Subject(s)
Frontotemporal Dementia , Humans , C9orf72 Protein/genetics , Cross-Sectional Studies , Neuropsychological Tests , Atrophy/complications , Mutation , tau Proteins/genetics
9.
Acta Neuropathol ; 144(6): 1065-1084, 2022 12.
Article in English | MEDLINE | ID: mdl-36066634

ABSTRACT

Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s). In up to eleven regions (ten cortical and one striatal), we quantified grey matter tau burden using digital histopathological analysis and assigned semi-quantitative ratings for neuronal degeneration (i.e. 0-4) and separate burden of glial and neuronal tau inclusions (i.e. 0-3). We used mixed modelling to compare pathology measures (1) across the entire cohort and (2) within isoform groups. In the total cohort, tau burden and neuronal degeneration were positively associated and most severe in the anterior temporal, anterior cingulate and transentorhinal cortices. Isoform groups showed distinctive features of tau burden and neuronal degeneration. Across all regions, the 3R isoform group had lower tau burden compared to the 4R group (p = 0.008), while at the same time showing more severe neuronal degeneration than the 4R group (p = 0.002). The 3R + 4R group had an intermediate profile with relatively high tau burden along with relatively severe neuronal degeneration. Neuronal tau inclusions were most frequent in the 4R group (p < 0.001 vs. 3R), while cortical glial tau inclusions were most frequent in the 3R + 4R and 4R groups (p ≤ 0.009 vs. 3R). Regionally, neuronal degeneration was consistently most severe in the anterior temporal cortex within each isoform group. In contrast, the regions with the highest tau burden differed in isoform groups (3R: striatum; 3R + 4R: striatum, inferior parietal lobule, middle frontal cortex, anterior cingulate cortex; 4R: transentorhinal cortex, anterior temporal cortex, fusiform gyrus). We conclude that FTLD-MAPT isoform groups show distinctive features of overall neuronal degeneration and regional tau burden, but all share pronounced anterior temporal neuronal degeneration. These data suggest that distinct isoform-related mechanisms of genetic tauopathies, with slightly divergent tau distribution, may share similar regional vulnerability to neurodegeneration within the frontotemporal paralimbic networks.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Tauopathies , Humans , tau Proteins/genetics , Tauopathies/pathology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Frontotemporal Dementia/pathology , Protein Isoforms , Neurons/pathology
10.
Nat Neurosci ; 25(8): 1034-1048, 2022 08.
Article in English | MEDLINE | ID: mdl-35879464

ABSTRACT

Frontotemporal dementia (FTD) is the second most prevalent form of early-onset dementia, affecting predominantly frontal and temporal cerebral lobes. Heterozygous mutations in the progranulin gene (GRN) cause autosomal-dominant FTD (FTD-GRN), associated with TDP-43 inclusions, neuronal loss, axonal degeneration and gliosis, but FTD-GRN pathogenesis is largely unresolved. Here we report single-nucleus RNA sequencing of microglia, astrocytes and the neurovasculature from frontal, temporal and occipital cortical tissue from control and FTD-GRN brains. We show that fibroblast and mesenchymal cell numbers were enriched in FTD-GRN, and we identified disease-associated subtypes of astrocytes and endothelial cells. Expression of gene modules associated with blood-brain barrier (BBB) dysfunction was significantly enriched in FTD-GRN endothelial cells. The vasculature supportive function and capillary coverage by pericytes was reduced in FTD-GRN tissue, with increased and hypertrophic vascularization and an enrichment of perivascular T cells. Our results indicate a perturbed BBB and suggest that the neurovascular unit is severely affected in FTD-GRN.


Subject(s)
Frontotemporal Dementia , Progranulins , Blood-Brain Barrier/physiopathology , Endothelial Cells/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mutation , Progranulins/genetics , Sequence Analysis, RNA , Temporal Lobe/pathology
11.
Alzheimers Dement (N Y) ; 7(1): e12188, 2021.
Article in English | MEDLINE | ID: mdl-34368417

ABSTRACT

INTRODUCTION: In primary progressive aphasia (PPA) patients with autopsy-confirmed Alzheimer's disease (AD) or frontotemporal lobar degeneration (FLTD), we tested how the core clinical features of logopenic PPA-naming and repetition-change over time and relate to pathologic burden. METHODS: In PPA with AD (n = 13) or FTLD (n = 16) pathology, Boston Naming Test and Forward Digit Span measured longitudinal naming and repetition; as reference, Mini-Mental State Examination (MMSE) measured global cognition. Pathologic burden in left peri-Sylvian regions was related to longitudinal cognitive decline. RESULTS: PPA with AD showed greater decline in naming (P = 0.021) and repetition (P = 0.020), compared to FTLD; there was no difference in MMSE decline (P = 0.99). Across all PPA, declining naming (P = 0.0084) and repetition (P = 0.011) were associated with angular, superior-middle temporal (naming P = 0.014; repetition P = 0.011) and middle frontal (naming P = 0.041; repetition P = 0.030) pathologic burden. DISCUSSION: Unique longitudinal profiles of naming and repetition performance in PPA with AD are related to left peri-Sylvian pathology.

12.
Neurology ; 97(10): e1017-e1030, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34210823

ABSTRACT

OBJECTIVE: To assess the [18F]flortaucipir binding distribution across MAPT mutations in presymptomatic and symptomatic carriers. METHODS: We compared regional [18F]flortaucipir binding potential (BPND) derived from a 130-minute dynamic [18F]flortaucipir PET scan in 9 (pre)symptomatic MAPT mutation carriers (4 with P301L [1 symptomatic], 2 with R406W [1 symptomatic], 1 presymptomatic L315R, 1 presymptomatic S320F, and 1 symptomatic G272V carrier) with 30 cognitively normal controls and 52 patients with Alzheimer disease. RESULTS: [18F]Flortaucipir BPND images showed overall highest binding in the symptomatic carriers. This was most pronounced in the symptomatic R406W carrier in whom tau binding exceeded the normal control range in the anterior cingulate cortex, insula, amygdala, temporal, parietal, and frontal lobe. Elevated medial temporal lobe BPND was observed in a presymptomatic R406W carrier. The single symptomatic carrier and 1 of the 3 presymptomatic P301L carriers showed elevated [18F]flortaucipir BPND in the insula, parietal, and frontal lobe compared to controls. The symptomatic G272V carrier exhibited a widespread elevated cortical BPND, with at neuropathologic examination a combination of 3R pathology and encephalitis. The L315R presymptomatic mutation carrier showed higher frontal BPND compared to controls. The BPND values of the S320F presymptomatic mutation carrier fell within the range of controls. CONCLUSION: Presymptomatic MAPT mutation carriers already showed subtle elevated tau binding, whereas symptomatic MAPT mutation carriers showed a more marked increase in [18F]flortaucipir BPND. Tau deposition was most pronounced in R406W MAPT (pre)symptomatic mutation carriers, which is associated with both 3R and 4R tau accumulation. Thus, [18F]flortaucipir may serve as an early biomarker for MAPT mutation carriers in mutations that cause 3R/4R tauopathies.


Subject(s)
Brain/diagnostic imaging , Frontotemporal Dementia/diagnostic imaging , Neuroimaging/methods , Positron-Emission Tomography/methods , tau Proteins/genetics , Adult , Aged , Aged, 80 and over , Carbolines , Contrast Media , Early Diagnosis , Female , Frontotemporal Dementia/genetics , Heterozygote , Humans , Male , Middle Aged , Mutation
13.
Acta Neuropathol Commun ; 9(1): 30, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33622418

ABSTRACT

Frontotemporal lobar degeneration proteinopathies with tau inclusions (FTLD-Tau) or TDP-43 inclusions (FTLD-TDP) are associated with clinically similar phenotypes. However, these disparate proteinopathies likely differ in cellular severity and regional distribution of inclusions in white matter (WM) and adjacent grey matter (GM), which have been understudied. We performed a neuropathological study of subcortical WM and adjacent GM in a large autopsy cohort (n = 92; FTLD-Tau = 37, FTLD-TDP = 55) using a validated digital image approach. The antemortem clinical phenotype was behavioral-variant frontotemporal dementia (bvFTD) in 23 patients with FTLD-Tau and 42 with FTLD-TDP, and primary progressive aphasia (PPA) in 14 patients with FTLD-Tau and 13 with FTLD-TDP. We used linear mixed-effects models to: (1) compare WM pathology burden between proteinopathies; (2) investigate the relationship between WM pathology burden and WM degeneration using luxol fast blue (LFB) myelin staining; (3) study regional patterns of pathology burden in clinico-pathological groups. WM pathology burden was greater in FTLD-Tau compared to FTLD-TDP across regions (beta = 4.21, SE = 0.34, p < 0.001), and correlated with the degree of WM degeneration in both FTLD-Tau (beta = 0.32, SE = 0.10, p = 0.002) and FTLD-TDP (beta = 0.40, SE = 0.08, p < 0.001). WM degeneration was greater in FTLD-Tau than FTLD-TDP particularly in middle-frontal and anterior cingulate regions (p < 0.05). Distinct regional patterns of WM and GM inclusions characterized FTLD-Tau and FTLD-TDP proteinopathies, and associated in part with clinical phenotype. In FTLD-Tau, WM pathology was particularly severe in the dorsolateral frontal cortex in nonfluent-variant PPA, and GM pathology in dorsolateral and paralimbic frontal regions with some variation across tauopathies. Differently, FTLD-TDP had little WM regional variability, but showed severe GM pathology burden in ventromedial prefrontal regions in both bvFTD and PPA. To conclude, FTLD-Tau and FTLD-TDP proteinopathies have distinct severity and regional distribution of WM and GM pathology, which may impact their clinical presentation, with overall greater severity of WM pathology as a distinguishing feature of tauopathies.


Subject(s)
Brain Diseases/pathology , Frontotemporal Lobar Degeneration/pathology , Gray Matter/pathology , TDP-43 Proteinopathies/pathology , Tauopathies/pathology , White Matter/pathology , Adult , Aged , Aged, 80 and over , Autopsy , Cohort Studies , DNA-Binding Proteins/metabolism , Female , Frontotemporal Lobar Degeneration/classification , Humans , Male , Middle Aged , tau Proteins/metabolism
14.
Front Neurosci ; 13: 682, 2019.
Article in English | MEDLINE | ID: mdl-31333403

ABSTRACT

Digital pathology is increasingly prominent in neurodegenerative disease research, but variability in immunohistochemical staining intensity between staining batches prevents large-scale comparative studies. Here we provide a statistically rigorous method to account for staining batch effects in a large sample of brain tissue with frontotemporal lobar degeneration with tau inclusions (FTLD-Tau, N = 39) or TDP-43 inclusions (FTLD-TDP, N = 53). We analyzed the relationship between duplicate measurements of digital pathology, i.e., percent area occupied by pathology (%AO) for grey matter (GM) and white matter (WM), from two distinct staining batches. We found a significant difference in duplicate measurements from distinct staining batches in FTLD-Tau (mean difference: GM = 1.13 ± 0.44, WM = 1.28 ± 0.56; p < 0.001) and FTLD-TDP (GM = 0.95 ± 0.66, WM = 0.90 ± 0.77; p < 0.001), and these measurements were linearly related (R-squared [Rsq]: FTLD-Tau GM = 0.92, WM = 0.92; FTLD-TDP GM = 0.75, WM = 0.78; p < 0.001 all). We therefore used linear regression to transform %AO from distinct staining batches into equivalent values. Using a train-test set design, we examined transformation prerequisites (i.e., Rsq) from linear-modeling in training sets, and we applied equivalence factors (i.e., beta, intercept) to independent testing sets to determine transformation outcomes (i.e., intraclass correlation coefficient [ICC]). First, random iterations (×100) of linear regression showed that smaller training sets (N = 12-24), feasible for prospective use, have acceptable transformation prerequisites (mean Rsq: FTLD-Tau ≥0.9; FTLD-TDP ≥0.7). When cross-validated on independent complementary testing sets, in FTLD-Tau, N = 12 training sets resulted in 100% of GM and WM transformations with optimal transformation outcomes (ICC ≥ 0.8), while in FTLD-TDP N = 24 training sets resulted in optimal ICC in testing sets (GM = 72%, WM = 98%). We therefore propose training sets of N = 12 in FTLD-Tau and N = 24 in FTLD-TDP for prospective transformations. Finally, the transformation enabled us to significantly reduce batch-related difference in duplicate measurements in FTLD-Tau (GM/WM: p < 0.001 both) and FTLD-TDP (GM/WM: p < 0.001 both), and to decrease the necessary sample size estimated in a power analysis in FTLD-Tau (GM:-40%; WM: -34%) and FTLD-TDP (GM: -20%; WM: -30%). Finally, we tested generalizability of our approach using a second, open-source, image analysis platform and found similar results. We concluded that a small sample of tissue stained in duplicate can be used to account for pre-analytical variability such as staining batch effects, thereby improving methods for future studies.

15.
Ann Neurol ; 85(5): 630-643, 2019 05.
Article in English | MEDLINE | ID: mdl-30851133

ABSTRACT

OBJECTIVE: To measure postmortem burden of frontotemporal lobar degeneration (FTLD) with TDP-43 (FTLD-TDP) or tau (FTLD-Tau) proteinopathy across hemispheres in primary progressive aphasia (PPA) using digital histopathology and to identify clinicopathological correlates of these distinct proteinopathies. METHODS: In an autopsy cohort of PPA (FTLD-TDP = 13, FTLD-Tau = 14), we analyzed laterality and regional distribution of postmortem pathology, quantified using a validated digital histopathological approach, in available brain tissue from up to 8 cortical regions bilaterally. We related digital pathology to antemortem structural neuroimaging and specific clinical language features. RESULTS: Postmortem cortical pathology was left-lateralized in both FTLD-TDP (beta = -0.15, standard error [SE] = 0.05, p = 0.007) and FTLD-Tau (beta = -0.09, SE = 0.04, p = 0.015), but the degree of lateralization decreased with greater overall dementia severity before death (beta = -8.18, SE = 3.22, p = 0.015). Among 5 core pathology regions sampled, we found greatest pathology in left orbitofrontal cortex (OFC) in FTLD-TDP, which was greater than in FTLD-Tau (F = 47.07, df = 1,17, p < 0.001), and in left midfrontal cortex (MFC) in FTLD-Tau, which was greater than in FTLD-TDP (F = 19.34, df = 1,16, p < 0.001). Postmortem pathology was inversely associated with antemortem magnetic resonance imaging cortical thickness (beta = -0.04, SE = 0.01, p = 0.007) in regions matching autopsy sampling. Irrespective of PPA syndromic variant, single-word comprehension impairment was associated with greater left OFC pathology (t = -3.72, df = 10.72, p = 0.004) and nonfluent speech with greater left MFC pathology (t = -3.62, df = 12.00, p = 0.004) among the 5 core pathology regions. INTERPRETATION: In PPA, FTLD-TDP and FTLD-Tau have divergent anatomic distributions of left-lateralized postmortem pathology that relate to antemortem structural imaging and distinct language deficits. Although other brain regions may be implicated in neural networks supporting these complex language measures, our observations may eventually help to improve antemortem diagnosis of neuropathology in PPA. Ann Neurol 2019;85:630-643.


Subject(s)
Aphasia, Primary Progressive/metabolism , Aphasia, Primary Progressive/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , DNA-Binding Proteins/metabolism , tau Proteins/metabolism , Aged , Female , Humans , Male , Middle Aged
16.
Eur J Med Genet ; 62(4): 265-269, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30125676

ABSTRACT

We studied the presence of benign infantile epilepsy (BIE), paroxysmal kinesigenic dyskinesia (PKD), and PKD with infantile convulsions (PKD/IC) in patients with a 16p11.2 deletion including PRRT2 or with a PRRT2 loss-of-function sequence variant. Index patients were recruited from seven Dutch university hospitals. The presence of BIE, PKD and PKD/IC was retrospectively evaluated using questionnaires and medical records. We included 33 patients with a 16p11.2 deletion: three (9%) had BIE, none had PKD or PKD/IC. Twelve patients had a PRRT2 sequence variant: BIE was present in four (p = 0.069), PKD in six (p < 0.001) and PKD/IC in two (p = 0.067). Most patients with a deletion had undergone genetic testing because of developmental problems (87%), whereas all patients with a sequence variant were tested because of a movement disorder (55%) or epilepsy (45%). BIE, PKD and PKD/IC clearly showed incomplete penetrance in patients with 16p11.2 deletions, but were found in all and 95% of patients with a PRRT2 sequence variant in our study and a large literature cohort, respectively. Deletions and sequence variants have the same underlying loss-of-function disease mechanism. Thus, differences in ascertainment have led to overestimating the frequency of BIE, PKD and PKD/IC in patients with a PRRT2 sequence variant. This has important implications for counseling if genome-wide sequencing shows such variants in patients not presenting the PRRT2-related phenotypes.


Subject(s)
Autistic Disorder/genetics , Chromosome Disorders/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Phenotype , Adolescent , Adult , Autistic Disorder/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/pathology , Chromosomes, Human, Pair 16/genetics , Female , Humans , Intellectual Disability/pathology , Male
17.
Neurology ; 88(24): 2276-2284, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28515265

ABSTRACT

OBJECTIVE: To determine whether logopenic features of phonologic loop dysfunction reflect Alzheimer disease (AD) neuropathology in primary progressive aphasia (PPA). METHODS: We performed a retrospective case-control study of 34 patients with PPA with available autopsy tissue. We compared baseline and longitudinal clinical features in patients with primary AD neuropathology to those with primary non-AD pathologies. We analyzed regional neuroanatomic disease burden in pathology-defined groups using postmortem neuropathologic data. RESULTS: A total of 19/34 patients had primary AD pathology and 15/34 had non-AD pathology (13 frontotemporal lobar degeneration, 2 Lewy body disease). A total of 16/19 (84%) patients with AD had a logopenic spectrum phenotype; 5 met published criteria for the logopenic variant (lvPPA), 8 had additional grammatical or semantic deficits (lvPPA+), and 3 had relatively preserved sentence repetition (lvPPA-). Sentence repetition was impaired in 68% of patients with PPA with AD pathology; forward digit span (DF) was impaired in 90%, substantially higher than in non-AD PPA (33%, p < 0.01). Lexical retrieval difficulty was common in all patients with PPA and did not discriminate between groups. Compared to non-AD, PPA with AD pathology had elevated microscopic neurodegenerative pathology in the superior/midtemporal gyrus, angular gyrus, and midfrontal cortex (p < 0.01). Low DF scores correlated with high microscopic pathologic burden in superior/midtemporal and angular gyri (p ≤ 0.03). CONCLUSIONS: Phonologic loop dysfunction is a central feature of AD-associated PPA and specifically correlates with temporoparietal neurodegeneration. Quantitative measures of phonologic loop function, combined with modified clinical lvPPA criteria, may help discriminate AD-associated PPA.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Aphasia, Primary Progressive/diagnosis , Aphasia, Primary Progressive/pathology , Brain/pathology , Phonetics , Aged , Alzheimer Disease/psychology , Aphasia, Primary Progressive/psychology , Brain/diagnostic imaging , Cost of Illness , Female , Follow-Up Studies , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/pathology , Frontotemporal Lobar Degeneration/psychology , Humans , Language Tests , Longitudinal Studies , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Retrospective Studies
18.
Epilepsia Open ; 2(2): 244-254, 2017 06.
Article in English | MEDLINE | ID: mdl-29588953

ABSTRACT

Objective: To evaluate the diagnostic yield of microarray analysis in a hospital-based cohort of children with seizures and to identify novel candidate genes and susceptibility loci for epilepsy. Methods: Of all children who presented with their first seizure in the University Medical Center Groningen (January 2000 through May 2013) (n = 1,368), we included 226 (17%) children who underwent microarray analysis before June 2014. All 226 children had a definite diagnosis of epilepsy. All their copy number variants (CNVs) on chromosomes 1-22 and X that contain protein-coding genes and have a prevalence of <1% in healthy controls were evaluated for their pathogenicity. Results: Children selected for microarray analysis more often had developmental problems (82% vs. 25%, p < 0.001), facial dysmorphisms (49% vs. 8%, p < 0.001), or behavioral problems (41% vs. 13%, p < 0.001) than children who were not selected. We found known clinically relevant CNVs for epilepsy in 24 of the 226 children (11%). Seventeen of these 24 children had been diagnosed with symptomatic focal epilepsy not otherwise specified (71%) and five with West syndrome (21%). Of these 24 children, many had developmental problems (100%), behavioral problems (54%) or facial dysmorphisms (46%). We further identified five novel CNVs comprising four potential candidate genes for epilepsy: MYT1L, UNC5D, SCN4B, and NRXN3. Significance: The 11% yield in our hospital-based cohort underscores the importance of microarray analysis in diagnostic evaluation of children with epilepsy.

SELECTION OF CITATIONS
SEARCH DETAIL
...