Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Commun Biol ; 7(1): 725, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867087

ABSTRACT

The rising use of plastic results in an appalling amount of waste which is scattered into the environment. One of these plastics is PET which is mainly used for bottles. We have identified and characterized an esterase from Streptomyces, annotated as LipA, which can efficiently degrade the PET-derived oligomer BHET. The Streptomyces coelicolor ScLipA enzyme exhibits varying sequence similarity to several BHETase/PETase enzymes, including IsPETase, TfCut2, LCC, PET40 and PET46. Of 96 Streptomyces strains, 18% were able to degrade BHET via one of three variants of LipA, named ScLipA, S2LipA and S92LipA. SclipA was deleted from S. coelicolor resulting in reduced BHET degradation. Overexpression of all LipA variants significantly enhanced BHET degradation. All variants were expressed in E. coli for purification and biochemical analysis. The optimum conditions were determined as pH 7 and 25 °C for all variants. The activity on BHET and amorphous PET film was investigated. S2LipA efficiently degraded BHET and caused roughening and indents on the surface of PET films, comparable to the activity of previously described TfCut2 under the same conditions. The abundance of the S2LipA variant in Streptomyces suggests an environmental advantage towards the degradation of more polar substrates including these polluting plastics.


Subject(s)
Streptomyces , Streptomyces/enzymology , Streptomyces/genetics , Soil Microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Biodegradation, Environmental , Streptomyces coelicolor/enzymology , Streptomyces coelicolor/genetics , Esterases/metabolism , Esterases/genetics , Esterases/chemistry , Polyethylene Terephthalates/metabolism
2.
ACS Chem Biol ; 19(5): 1106-1115, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38602492

ABSTRACT

The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa/drug effects , Humans , Host Specificity , Drug Discovery , Lipopeptides/pharmacology , Lipopeptides/chemistry , Peptides
3.
ACS Chem Biol ; 19(5): 1131-1141, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38668630

ABSTRACT

Angucyclines are an important group of microbial natural products that display tremendous chemical diversity. Classical angucyclines are composed of a tetracyclic benz[a]anthracene scaffold with one ring attached at an angular orientation. However, in atypical angucyclines, the polyaromatic aglycone is cleaved at A-, B-, or C-rings, leading to structural rearrangements and enabling further chemical variety. Here, we have elucidated the branching points in angucycline biosynthesis leading toward cleavage of the C-ring in lugdunomycin and thioangucycline biosynthesis. We showed that 12-hydroxylation and 6-ketoreduction of UWM6 are shared steps in classical and C-ring-cleaved angucycline pathways, although the bifunctional 6-ketoreductase LugOIIred harbors additional unique 1-ketoreductase activity. We identified formation of the key intermediate 8-O-methyltetrangomycin by the LugN methyltransferase as the branching point toward C-ring-cleaved angucyclines. The final common step in lugdunomycin and thioangucycline biosynthesis is quinone reduction, catalyzed by the 7-ketoreductases LugG and TacO, respectively. In turn, the committing step toward thioangucyclines is 12-ketoreduction catalyzed by TacA, for which no orthologous protein exists on the lugdunomycin pathway. Our results confirm that quinone reductions are early tailoring steps and, therefore, may be mechanistically important for subsequent C-ring cleavage. Finally, many of the tailoring enzymes harbored broad substrate promiscuity, which we utilized in combinatorial enzymatic syntheses to generate the angucyclines SM 196 A and hydranthomycin. We propose that enzyme promiscuity and the competition of many of the enzymes for the same substrates lead to a branching biosynthetic network and formation of numerous shunt products typical for angucyclines rather than a canonical linear metabolic pathway.


Subject(s)
Streptomyces , Streptomyces/metabolism , Anthraquinones/metabolism , Anthraquinones/chemistry , Biological Products/metabolism , Biological Products/chemistry , Hydroxylation , Angucyclines and Angucyclinones
4.
J Mol Biol ; : 168558, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38580076

ABSTRACT

Actinobacteria undergo a complex multicellular life cycle and produce a wide range of specialized metabolites, including the majority of the antibiotics. These biological processes are controlled by intricate regulatory pathways, and to better understand how they are controlled we need to augment our insights into the transcription factor binding sites. Here, we present LogoMotif (https://logomotif.bioinformatics.nl), an open-source database for characterized and predicted transcription factor binding sites in Actinobacteria, along with their cognate position weight matrices and hidden Markov models. Genome-wide predictions of binding site locations in Streptomyces model organisms are supplied and visualized in interactive regulatory networks. In the web interface, users can freely access, download and investigate the underlying data. With this curated collection of actinobacterial regulatory interactions, LogoMotif serves as a basis for binding site predictions, thus providing users with clues on how to elicit the expression of genes of interest and guide genome mining efforts.

5.
Commun Chem ; 7(1): 71, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561415

ABSTRACT

Microbial natural products form the basis of most of the antibiotics used in the clinic. The vast majority has not yet been discovered, among others because the hidden chemical space is obscured by previously identified (and typically abundant) antibiotics in culture extracts. Efficient dereplication is therefore key to the discovery of our future medicines. Here we present an analytical platform for the efficient identification and prioritization of low abundance bioactive compounds at nanoliter scale, called nanoRAPIDS. NanoRAPIDS encompasses analytical scale separation and nanofractionation of natural extracts, followed by the bioassay of interest, automated mass spectrometry identification, and Global Natural Products Social molecular networking (GNPS) for dereplication. As little as 10 µL crude extract is fractionated into 384 fractions. First, bioactive congeners of iturins and surfactins were identified in Bacillus, based on their bioactivity. Subsequently, bioactive molecules were identified in an extensive network of angucyclines elicited by catechol in cultures of Streptomyces sp. This allowed the discovery of a highly unusual N-acetylcysteine conjugate of saquayamycin, despite low production levels in an otherwise abundant molecular family. These data underline the utility and broad application of the technology for the prioritization of minor bioactive compounds in complex extracts.

6.
Article in English | MEDLINE | ID: mdl-38569653

ABSTRACT

Microbes typically live in complex habitats where they need to rapidly adapt to continuously changing growth conditions. To do so, they produce an astonishing array of natural products with diverse structures and functions. Actinobacteria stand out for their prolific production of bioactive molecules, including antibiotics, anticancer agents, antifungals, and immunosuppressants. Attention has been directed especially towards the identification of the compounds they produce and the mining of the large diversity of biosynthetic gene clusters (BGCs) in their genomes. However, the current return on investment in random screening for bioactive compounds is low, while it is hard to predict which of the millions of BGCs should be prioritized. Moreover, many of the BGCs for yet undiscovered natural products are silent or cryptic under laboratory growth conditions. To identify ways to prioritize and activate these BGCs, knowledge regarding the way their expression is controlled is crucial. Intricate regulatory networks control global gene expression in Actinobacteria, governed by a staggering number of up to 1000 transcription factors per strain. This review highlights recent advances in experimental and computational methods for characterizing and predicting transcription factor binding sites and their applications to guide natural product discovery. We propose that regulation-guided genome mining approaches will open new avenues toward eliciting the expression of BGCs, as well as prioritizing subsets of BGCs for expression using synthetic biology approaches. ONE-SENTENCE SUMMARY: This review provides insights into advances in experimental and computational methods aimed at predicting transcription factor binding sites and their applications to guide natural product discovery.


Subject(s)
Actinobacteria , Biological Products , Drug Discovery , Gene Regulatory Networks , Actinobacteria/metabolism , Actinobacteria/genetics , Biological Products/metabolism , Biosynthetic Pathways , Computational Biology/methods , Gene Expression Regulation, Bacterial , Multigene Family , Transcription Factors/metabolism , Transcription Factors/genetics
7.
Front Bioeng Biotechnol ; 12: 1363803, 2024.
Article in English | MEDLINE | ID: mdl-38481571

ABSTRACT

Introduction: Daunorubicin and doxorubicin, two anthracycline polyketides produced by S. peucetius, are potent anticancer agents that are widely used in chemotherapy, despite severe side effects. Recent advances have highlighted the potential of producing improved derivatives with reduced side effects by incorporating l-rhodosamine, the N,N-dimethyl analogue of the native amino sugar moiety. Method: In this study, we aimed to produce N,N-dimethylated anthracyclines by engineering the doxorubicin biosynthetic pathway in the industrial Streptomyces peucetius strain G001. To achieve this, we introduced genes from the aclarubicin biosynthetic pathway encoding the sugar N-methyltransferases AclP and AknX2. Furthermore, the native gene for glycosyltransferase DnrS was replaced with genes encoding the aclarubicin glycosyltransferases AknS and AknT. Additionally, the gene for methylesterase RdmC from the rhodomycin biosynthetic pathway was introduced. Results: A new host was engineered successfully, whereby genes from the aclarubicin pathway were introduced and expressed. LC-MS/MS analysis of the engineered strains showed that dimethylated sugars were efficiently produced, and that these were incorporated ino the anthracycline biosynthetic pathway to produce the novel dimethylated anthracycline N,N-dimethyldaunorubicin. Further downstream tailoring steps catalysed by the cytochrome P450 monooxygenase DoxA exhibited limited efficacy with N,N-dimethylated substrates. This resulted in only low production levels of N,N-dimethyldaunorubicin and no N,N-dimethyldoxorubicin, most likely due to the low affinity of DoxA for dimethylated substrates. Discussion: S. peucetius G001 was engineered such as to produce N,N-dimethylated sugars, which were incorporated into the biosynthetic pathway. This allowed the successful production of N,N-dimethyldaunorubicin, an anticancer drug with reduced cytotoxicity. DoxA is the key enzyme that determines the efficiency of the biosynthesis of N,N-dimethylated anthracyclines, and engineering of this enzyme will be a major step forwards towards the efficient production of more N,N-dimethylated anthracyclines, including N,N-dimethyldoxorubicin. This study provides valuable insights into the biosynthesis of clinically relevant daunorubicin derivatives, highlighting the importance of combinatorial biosynthesis.

8.
Environ Microbiol ; 26(2): e16589, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356049

ABSTRACT

Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.


Subject(s)
Actinomycetales , Mammoths , Streptomyces , Animals , Phylogeny , Genomics , Streptomyces/genetics , Feces
9.
J Ultrasound Med ; 43(3): 513-523, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050780

ABSTRACT

OBJECTIVES: The number and distribution of lung ultrasound (LUS) imaging artifacts termed B-lines correlate with the presence of acute lung disease such as infection, acute respiratory distress syndrome (ARDS), and pulmonary edema. Detection and interpretation of B-lines require dedicated training and is machine and operator-dependent. The goal of this study was to identify radio frequency (RF) signal features associated with B-lines in a cohort of patients with cardiogenic pulmonary edema. A quantitative signal indicator could then be used in a single-element, non-imaging, wearable, automated lung ultrasound sensor (LUSS) for continuous hands-free monitoring of lung fluid. METHODS: In this prospective study a 10-zone LUS exam was performed in 16 participants, including 12 patients admitted with acute cardiogenic pulmonary edema (mean age 60 ± 12 years) and 4 healthy controls (mean age 44 ± 21). Overall,160 individual LUS video clips were recorded. The LUS exams were performed with a phased array probe driven by an open-platform ultrasound system with simultaneous RF signal collection. RF data were analyzed offline for candidate B-line indicators based on signal amplitude, temporal variability, and frequency spectrum; blinded independent review of LUS images for the presence or absence of B-lines served as ground truth. Predictive performance of the signal indicators was determined with receiving operator characteristic (ROC) analysis with k-fold cross-validation. RESULTS: Two RF signal features-temporal variability of signal amplitude at large depths and at the pleural line-were strongly associated with B-line presence. The sensitivity and specificity of a combinatorial indicator were 93.2 and 58.5%, respectively, with cross-validated area under the ROC curve (AUC) of 0.91 (95% CI = 0.80-0.94). CONCLUSION: A combinatorial signal indicator for use with single-element non-imaging LUSS was developed to facilitate continuous monitoring of lung fluid in patients with respiratory illness.


Subject(s)
Pulmonary Edema , Respiratory Distress Syndrome , Humans , Middle Aged , Aged , Young Adult , Adult , Prospective Studies , Lung/diagnostic imaging , Sensitivity and Specificity , Ultrasonography/methods
10.
Commun Chem ; 6(1): 281, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110491

ABSTRACT

Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.

11.
Appl Environ Microbiol ; 89(12): e0167423, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37982622

ABSTRACT

IMPORTANCE: Central metabolism plays a key role in the control of growth and antibiotic production in streptomycetes. Specifically, aminosugars act as signaling molecules that affect development and antibiotic production, via metabolic interference with the global repressor DasR. While aminosugar metabolism directly connects to other major metabolic routes such as glycolysis and cell wall synthesis, several important aspects of their metabolism are yet unresolved. Accumulation of N-acetylglucosamine 6-phosphate or glucosamine 6-phosphate is lethal to many bacteria, a yet unresolved phenomenon referred to as "aminosugar sensitivity." We made use of this concept by selecting for suppressors in genes related to glucosamine toxicity in nagB mutants, which showed that the gene pair of rok-family regulatory gene rokL6 and major facilitator superfamily transporter gene sco1448 forms a cryptic rescue mechanism. Inactivation of rokL6 resulted in the expression of sco1448, which then prevents the toxicity of amino sugar-derived metabolites in Streptomyces. The systems biology of RokL6 and its transcriptional control of sco1448 shed new light on aminosugar metabolism in streptomycetes and on the response of bacteria to aminosugar toxicity.


Subject(s)
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Glucosamine/metabolism , Streptomyces/genetics , Amino Sugars/metabolism , Anti-Bacterial Agents , Genes, Regulator , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
12.
Appl Environ Microbiol ; 89(11): e0123923, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37902333

ABSTRACT

IMPORTANCE: Microorganisms that live on or inside plants can influence plant growth and health. Among the plant-associated bacteria, streptomycetes play an important role in defense against plant diseases, but the underlying mechanisms are not well understood. Here, we demonstrate that the plant hormones jasmonic acid (JA) and methyl jasmonate directly affect the life cycle of streptomycetes by modulating antibiotic synthesis and promoting faster development. Moreover, the plant hormones specifically stimulate the synthesis of the polyketide antibiotic actinorhodin in Streptomyces coelicolor. JA is then modified in the cell by amino acid conjugation, thereby quenching toxicity. Collectively, these results provide new insight into the impact of a key plant hormone on diverse phenotypic responses of streptomycetes.


Subject(s)
Amino Acids , Plant Growth Regulators , Anti-Bacterial Agents , Hormones
13.
ACS Synth Biol ; 12(10): 3143-3147, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37801665

ABSTRACT

Streptomyces, a genus of Gram-positive bacteria, is known as nature's medicine maker, producing a plethora of natural products that have huge benefits for human health, agriculture, and biotechnology. To take full advantage of this treasure trove of bioactive molecules, better genetic tools are required for the genetic engineering and synthetic biology of Streptomyces. We therefore developed CUBIC, a novel CUmate-Based Inducible CRISPR interference (CRISPRi) system that allows highly efficient and inducible gene knockdown in Streptomyces. Its broad application is shown by the specific and nondisruptive knockdown of genes involved in growth, development and antibiotic production in various Streptomyces species. To facilitate hyper-efficient plasmid construction, we adapted the Golden Gate assembly to achieve 100% cloning efficiency of the protospacers. We expect that the versatile plug-and-play CUBIC system will create new opportunities for research and innovation in the field of Streptomyces.


Subject(s)
Streptomyces , Humans , Streptomyces/genetics , Promoter Regions, Genetic , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Engineering , Plasmids/genetics
14.
Gut Microbes ; 15(1): 2232506, 2023.
Article in English | MEDLINE | ID: mdl-37417553

ABSTRACT

The gut microbiota plays a pivotal role in health and disease. The use of probiotics as microbiota-targeted therapies is a promising strategy to improve host health. However, the molecular mechanisms involved in such therapies are often not well understood, particularly when targeting the small intestinal microbiota. In this study, we investigated the effects of a probiotic formula (Ecologic®825) on the adult human small intestinal ileostoma microbiota. The results showed that supplementation with the probiotic formula led to a reduction in the growth of pathobionts, such as Enterococcaceae and Enterobacteriaceae, and a decrease in ethanol production. These changes were associated with significant alterations in nutrient utilization and resistance to perturbations. These probiotic mediated alterations which coincided with an initial increase in lactate production and decrease in pH were followed by a sharp increase in the levels of butyrate and propionate. Moreover, the probiotic formula increased the production of multiple N-acyl amino acids in the stoma samples. The study demonstrates the utility of network theory in identifying novel microbiota-targeted therapies and improving existing ones. Overall, the findings provide insights into the dynamic molecular mechanisms underlying probiotic therapies, which can aid in the development of more effective treatments for a range of conditions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Adult , Humans , Probiotics/pharmacology , Propionates/pharmacology , Enterobacteriaceae
15.
Article in English | MEDLINE | ID: mdl-37318967

ABSTRACT

Boiling histotripsy (BH) is a pulsed high-intensity focused ultrasound (HIFU) method relying on the generation of high-amplitude shocks at the focus, localized enhanced shock-wave heating, and bubble activity driven by shocks to induce tissue liquefaction. BH uses sequences of 1-20 ms long pulses with shock fronts of over 60 MPa amplitude, initiates boiling at the focus of the HIFU transducer within each pulse, and the remainder shocks of the pulse then interact with the boiling vapor cavities. One effect of this interaction is the creation of a prefocal bubble cloud due to reflection of shocks from the initially generated mm-sized cavities: the shocks are inverted when reflected from a pressure-release cavity wall resulting in sufficient negative pressure to reach intrinsic cavitation threshold in front of the cavity. Secondary clouds then form due to shock-wave scattering from the first one. Formation of such prefocal bubble clouds has been known as one of the mechanisms of tissue liquefaction in BH. Here, a methodology is proposed to enlarge the axial dimension of this bubble cloud by steering the HIFU focus toward the transducer after the initiation of boiling until the end of each BH pulse and thus to accelerate treatment. A BH system comprising a 1.5 MHz 256-element phased array connected to a Verasonics V1 system was used. High-speed photography of BH sonications in transparent gels was performed to observe the extension of the bubble cloud resulting from shock reflections and scattering. Volumetric BH lesions were then generated in ex vivo tissue using the proposed approach. Results showed up to almost threefold increase of the tissue ablation rate with axial focus steering during the BH pulse delivery compared to standard BH.


Subject(s)
High-Intensity Focused Ultrasound Ablation , High-Intensity Focused Ultrasound Ablation/methods , Transducers , Sonication
16.
Nucleic Acids Res ; 51(W1): W46-W50, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37140036

ABSTRACT

Microorganisms produce small bioactive compounds as part of their secondary or specialised metabolism. Often, such metabolites have antimicrobial, anticancer, antifungal, antiviral or other bio-activities and thus play an important role for applications in medicine and agriculture. In the past decade, genome mining has become a widely-used method to explore, access, and analyse the available biodiversity of these compounds. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' (https://antismash.secondarymetabolites.org/) has supported researchers in their microbial genome mining tasks, both as a free to use web server and as a standalone tool under an OSI-approved open source licence. It is currently the most widely used tool for detecting and characterising biosynthetic gene clusters (BGCs) in archaea, bacteria, and fungi. Here, we present the updated version 7 of antiSMASH. antiSMASH 7 increases the number of supported cluster types from 71 to 81, as well as containing improvements in the areas of chemical structure prediction, enzymatic assembly-line visualisation and gene cluster regulation.


Subject(s)
Computers , Software , Bacteria/genetics , Bacteria/metabolism , Archaea/genetics , Genome, Microbial , Multigene Family , Secondary Metabolism/genetics
17.
Org Lett ; 25(13): 2167-2171, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37026371

ABSTRACT

Organic synthesis continues to drive a broad range of research advances in chemistry and related sciences. Another clear trend in organic synthesis research is the increasing desire to target improvements in the quality of life of humankind, new materials, and product specificity. Here, a landscape view of organic synthesis research is provided by analysis of the CAS Content Collection. Three emerging research directions, enzyme catalysis, photocatalysis, and green chemistry in organic synthesis, were identified and featured based on the publication trend analysis.

18.
J Org Chem ; 88(7): 4031-4035, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37026384

ABSTRACT

Organic synthesis continues to drive a broad range of research advances in chemistry and related sciences. Another clear trend in organic synthesis research is the increasing desire to target improvements in the quality of life of humankind, new materials, and product specificity. Here, a landscape view of organic synthesis research is provided by analysis of the CAS Content Collection. Three emerging research directions, enzyme catalysis, photocatalysis, and green chemistry in organic synthesis, were identified and featured based on the publication trend analysis.

19.
Environ Microbiol ; 25(9): 1565-1574, 2023 09.
Article in English | MEDLINE | ID: mdl-36999338

ABSTRACT

Geosmin may be the most familiar volatile compound, as it lends the earthy smell to soil. The compound is a member of the largest family of natural products, the terpenoids. The broad distribution of geosmin among bacteria in both terrestrial and aquatic environments suggests that this compound has an important ecological function, for example, as a signal (attractant or repellent) or as a protective specialized metabolite against biotic and abiotic stresses. While geosmin is part of our everyday life, scientists still do not understand the exact biological function of this omnipresent natural product. This minireview summarizes the current general observations regarding geosmin in prokaryotes and introduces new insights into its biosynthesis and regulation, as well as its biological roles in terrestrial and aquatic environments.


Subject(s)
Bacteria , Odorants , Odorants/analysis , Bacteria/genetics , Bacteria/metabolism , Naphthols/chemistry , Naphthols/metabolism , Sensation
20.
ACS Infect Dis ; 9(4): 739-748, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37000899

ABSTRACT

The unabated rise of antibiotic resistance has raised the specter of a post-antibiotic era and underscored the importance of developing new classes of antibiotics. The relacidines are a recently discovered group of nonribosomal lipopeptide antibiotics that show promising activity against Gram-negative pathogens and share structural similarities with brevicidine and laterocidine. While the first reports of the relacidines indicated that they possess a C-terminal five-amino acid macrolactone, an N-terminal lipid tail, and an overall positive charge, no stereochemical configuration was assigned, thereby precluding a full structure determination. To address this issue, we here report a bioinformatics guided total synthesis of relacidine A and B and show that the authentic natural products match our predicted and synthesized structures. Following on this, we also synthesized an analogue of relacidine A wherein the ester linkage of the macrolactone was replaced by the corresponding amide. This analogue was found to possess enhanced hydrolytic stability while maintaining the antibacterial activity of the natural product in both in vitro and in vivo efficacy studies.


Subject(s)
Anti-Bacterial Agents , Lipopeptides , Anti-Bacterial Agents/chemistry , Lipopeptides/pharmacology , Lipopeptides/chemistry , Amides
SELECTION OF CITATIONS
SEARCH DETAIL
...